您的当前位置:首页正文

数学之美读后感

2022-06-15 来源:知库网

数学之美读后感 篇1

《数学之美》读后感2000字:

第一次看到《数学之美》系列文章,是在2008年的Google黑板报上(那个时候Google还没有退出中国)。作者吴军博士当时是Google的研究员,后来到腾讯担任副总裁,两年后又回到Google负责人工智能方面项目,现在他自己创办了创投公司。可以说,吴军是从学术到工业,再到投资界的顶尖专家,在每个领域都有很深的造诣。

之所以对这个系列文章记忆犹新,是因为当初自己正在做机器学习方面的研究,而书中举的很多例子正是我在研究过程中碰到的问题。和其他数学题材书籍比起来,最难能可贵的是,吴军把抽象、深奥的数学方法解释得通俗易懂,给人以很多启发,也让人由衷感叹数学的简单之美和强大之美。

此后,吴军把专栏内容集册成书,并发行了两版,每次读完都有更深一层的体会。至此,我从方法论和思维方式上对此书加以总结,以对这次持续十年的阅读历程画个句号。

一、学习建立解决智能问题的框架。在面对智能问题时,一般地可以考虑按以下四个步骤求解:1.将问题转换成数字描述;2.找到恰当的数学模型(目标函数);3.对复杂的数学模型进行简化或近似处理,以便计算;4.求解目标函数。(对统计模型来说,还要利用数据学习参数)

在今天这个大数据和云计算时代,统计模型往往是解决问题的利器,因为现在我们要解决的问题很多是不确定的。从信息论的角度讲,统计模型的本质是利用信息来消除或减少不确定性。此外,摩尔定律的持续作用,让计算能力快速提高的同时,计算成本急剧降低,使得解决统计模型所需要的海量计算成为可能。

可以说,在科技发展的这个时间点,统计+数据+计算=人工智能。以前计算能力不够,统计模型无法得到求解,在当等式左边三要素都齐备之后,人工智能才就此走向了浪潮之巅。

二、在做事上,首先追求完成,而非完美。许多时候做事失败,不是因为人不够优秀,而是做事的方法不对。一开始追求大而全的解决方案,之后长时间不能完成,最后不了了之。在工程上,应该坚持寻找简单有效的解决方案,先帮助用户解决80%的问题,再慢慢解决剩下的20%问题。

这么做至少有两个好处:1.节约资源。资深工程师往往倾向于低估简单方法的有效性,而完美的方案需要花费大量的资源和时间,但可能最后的提高不多,即性价比不高;2.简单的方案容易解释每个步骤和方法背后的道理,这样不仅便于出了问题时查错,而且容易找到今后改进的目标。

三、正确认识道和术。做事情的方法有道和术两种境界,具体的做事方法是术,做事的原理和原则是道。在术的层面,往往没有捷径可走,必须要通过不断的训练和努力。道决定了做事结果的上限,很多时候在术的层面再努力,也无法突破这个边界,这个时候就要考虑道是否正确。

对搜索引擎反作弊这件事,在术的层面的解决方案是,找出每个作弊的例子,分析并清除之。这种方法能解决问题,而且不需要太动脑子,但是工作量巨大,不断会有新的作弊方法出现,难以从个别现象上升到普通规律,即所谓的“头痛医头、脚痛医脚”。Google从一开始,就认为反作弊实质上是个通信中解决噪音问题,并从加强通信自身的抗干扰能力、过滤噪音两方面入手,从根本上提高了搜索算法的抗作弊能力,达到了事半功倍的效果。可见追求术的人一辈子工作很辛苦,只有掌握了做事的道才能永远游刃有余。

四、找到科学的工作方法很重要。人类为了实现飞行的梦想,首先想到的是模仿鸟类制作振动的翅膀,但这种方法根本不能让人飞起来。后来英国人乔治·凯利爵士通过重新审视鸟类翅膀的功能,发现了空气动力学原理,并制造了一架滑翔机,实现了人类历史上第一次载人滑翔飞行。后人从空气动力学这个科学原理出发,最终发明了现代固定翼飞机。

在人工智能领域,也存在上述“鸟飞派”和“空气动力学派”的分别。机器翻译中,最难的问题之一是词的二义性。比如Bush一词可以是美国总统布什的名字,也可以是灌木丛。最直接想法的是告诉计算机加一条规则:“总统做宾语时,主语必须是一个人”。如果这样做的话,语法规则就多得数不清了,而且还有很多例外。

真正简单却实用的方法是,从大量文本中找到和总统布什一起出现的词,比如美国、华盛顿、国会等等,对灌木丛也作如此处理。在翻译Bush时,看看上下文中哪类相关的词多就行了。这就巧妙地把一个人类的智能问题变成计算机擅长的计算统计问题。

从上述例子中可以看到,所谓鸟飞派,就是指从经验出发,让计算机模仿人的思维方式,试图获得智能的做法,这个做法证明行不通。所谓空气动力学派,就是指搞清楚智能问题的本质,让计算机通过数据和数学模型解决智能问题。今天人工智能的全部进步,都是走后一条道路的结果。

《数学之美》一书,即使对不做研究或工程的人来说,也是开卷有益的。当吴军老师如讲故事般地,把复杂的问题以简单的数学形式讲述出来的时候,你会发现,原本深奥的公式是如此亲切和栩栩如生,也让人由此坚信,任何复杂的问题,最终都可以用简单的方式去解决。

可以说,数学之美,也是化繁为简之美。

数学之美读后感 篇2

数学之美,源自数学的概括与抽象。而数学的抽象,又恰恰是许多人难以接受数学之梗阻。所以,一般来说,能够欣赏到数学之美,必有一定的数学基础。不过,吴军的《数学之美》,语言通俗,略沉心境,顺利读懂其要义,应该是不难的事。有这种说法,真正的大师,能够将复杂的东西,通俗表达。这话我不尽信,但也确实佩服那些把数学理论通俗易懂、形象生动描述的专家,读了《数学之美》,觉得吴军博士不错。

人类发明了许许多多的语言,如自然语言(包括各国各民族的语言)、音乐、绘画等,数学也是一种语言。读懂各种语言,需要下一定功夫,只是有些语言本身比较通俗,功夫不用太深,但像数学这样的语言,数字化,符号化,抽象化,逻辑化,难言大众望而生畏,也着实不少人望而却步。如果我们的数学老师们,能够将这些“化”都“简化”,或者尽量简化些,那是不是有更多的人有迎难而上的勇气呢?也许吧!然而,毕竟数学除了作为工具性角色,还要培养和训练人的思维,一味地简化和通俗,那种逻辑思维的特征要素,失之亦可惜呀。前些日,读了保罗.洛克哈特(美国)的《度量:一首献给数学的情歌》,其对形状和运动的度量叙述,非常通俗,给人启发,但对我这数学背景出身的人来说,因思想深处固守那份对抽象性和逻辑性的呆痴,而总感觉其味不够,犹如爱好辣味的江西人,怕不辣二无味。

五世纪著名数学评论家普洛克拉斯说:“哪里有数,那里就有美”。我国著名数学家华罗庚说:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美。”数学之美表现丰富,如美的形式符号、美的公式、美的曲线、美的曲面、美的证明、美的方法、美的理论等。从内容来说,数学之美有可分为结构美、语言美与方法美,数学也有简洁之美、对称之美、和谐之美。罗素说,数学的美,“是一种冷而严肃的美”。所以,欣赏数学的美,是需要一定能力和技巧的。

数学的应用,也是数学美的特征。科学发展到现在,数学应用无处不在,数学应用的方法很多。一个数学的抽象,包含了无穷的客观现实。解决问题,尽量方法简单,能简不繁,是一种原则。数学应用之美,就在于简单,在于巧妙,在于效奇。

作者:邓毅雄

数学之美读后感 篇3

看到吴军的另一本书《数学之美》,激起了很深的兴趣,所以很快把书看完了,普及了很多基础的知识的同时也启发了很多想法,感觉很爽。

我自己在交大学的是工科(虽然没怎么上过课),小学、初中、高中都是一路参加数学竞赛,名次都还不错,也因此没有参加中考、高考,一路保送,自己对数学有很深的感情,同时女朋友大学也是数学系,有点后悔的大学选了个并不感兴趣的专业(交大当时允许我随便选专业,我没有跟父母商量自己选了船舶制造)。看这本书的过程中找到了很多高中在看竞赛书的感觉,里面提到的很多概率论(不等式)、图论、数论的知识是高中数学联赛复试的重点,高中的时候已经研究的很深了,不过大学荒废了之后也忘得差不多了,书中提到的很多定理还很有亲切感

书名叫做《数学之美》,显得有些太大,毕竟更多的是吴军在google做搜索相关工作用到的数学模型的介绍与总结,提到的数学部分大多集中在概率论、图论、数论领域,所以书名太大了,可能hax说得对,也许是出版社为了卖书取得名字

不得不说吴军是一个大家,文字中能够透露出大家的气势,书中不断的穿插着各种历史上的大科学家以及科技领域的大家的小故事甚至八卦,从文字中非常能够感受到吴军是一个和他们一个层次的人(即使他自己会自谦说是一个二流的工程师之类)

书中具体的模型就不介绍了,说几点我学到的知识(仅仅皮毛),能列出来的都是看完还有点印象的:

一。在互联网世界中,信息是如何量化的,什么是信息熵?有啥用?

2。在搜索领域中,语言是如何统计的,特别是如何统过概率模型进行分词

三。搜索引擎是如何工作的-网络爬虫是怎么回事

4.pagerank是怎么回事?为了解决什么问题?

5.密码与解密领域的数学模型,尤其提到的二战时候的各种解密的趣事儿,提到的电视剧《暗算》打算抽空看下

6.拼音输入法的数学模型

7.、文本自动分类的模型

……看完之后最大的感受就是:

1.数学模型巨大作用,推动着新技术的发展

2。攻城师是一个伟大的职业。它可以利用这些知识转化为生产力。它非常强大

3.书中提到了很多数学模型都是在不断的进化、改良、升级,也就是说有人不断的在做优化,会有不断更好的模型、更新的技术出现,跟得上技术的发展可能也是比较重要的,否则很多人一直在做某一点上的持续优化就没有意义了。

但同时技术很大的作用是用来解决实际问题的,书中提到的各个数学模型、各种方法都是为了解决人们的需求或者业务的需求,毕竟公司不是科学研究所,所以追求通过技术直接解决用户需求或者做成易用的工具给业务人员、运营人员来间接解决用户需求是挺重要的,可能不是技术人员觉得做到80分就可以了,而是用户、使用工具的人觉得做到80分是一个重要的衡量

提到“工具”,想到赵赵说过的一句话:“不好用就等于没有”,可能就是这个点,同时运用工具的人必须好好的运用,如果用不好甚至不用就太对不起技术了。

数学之美读后感(二)

读了这本书后有一种强烈的感觉:工具必须先进。数学是强大的工具,计算机也是。

这两种工具的结合造就了强大的公司,如谷歌、百度、亚马逊、阿里、京东、腾迅等。他们不是百年老店,但他们有先进的工具。

掌握了先进的工具,必将获得竞争优势。如果你知道**有一群软件工程师维护着一大群计算机,不要犹豫,要想办法使用他们提供的服务,因为这会给你带来优势。所以我们用谷歌的搜索和电子邮件在亚马逊、京东和**上购物,用**和微博联系朋友,用银行卡和网上银行,用交易终端在全球市场进行各种交易

人类历史就是一部工具的进化史。石器、青铜、铁、火药、蒸汽机、内燃机、电报、电视、计算机、卫星、互联网和工具的进步引领着文明的进步。新工具不断淘汰旧工具,正如互联网**点播淘汰电视、微博淘汰报纸、电子书淘汰纸质图书一样。

但现在仍有一些古老的工具被人们使用,甚至花了很多时间在上面。毛笔就是这样一个例子。今天学***毛笔这种“落后的”工具,还有什么意义?

其实我们在使用一些“落后的”工具时,主要是在学***背后的思想。书画所蕴含的艺术美学的艺般原则,经得起特定工具变化的考验。甲骨文、金文、石鼓文对空间构成的认识,仍值得现代人学习。

思想工具是比实物工具更强大的工具。

工具组合使用,形成更强大的新工具。《数学之美》中提到的马尔可夫链虽然是很强大的工具,但我在数学课上没有听老师提到过。这本书中最令人印象深刻的例子是余弦定理和新闻分类。

余弦定理是一个中学数学,加上一些不太难的多维向量知识,解决了计算机新闻分类这样的问题!

每一件工具的背后都是对世界的理解。蒸汽机和内燃机背后,是力学的世界。电报、电视、计算机和因特网的背后是信息的世界。

数学是一种抽象的工具,是其他工具之后的工具。每一门学科要成为科学,都少不了数学。也许有一天人们会习惯用数学工具来分析艺术。

数学是一种语言,它源于具体的世界,又高于具体的世界。如果语言是对世界的理解和描述,如果数学是一门语言,那么它一定是最接近上帝的语言。看似毫不相关,却又能描述万事万物。

学***有什么用?物理学家费曼在大一时提出了这个问题。他的哥哥建议他调到物理系去。今天,这个问题已不成为问题。

拥有扎实数学技能的人才正进入金融业等各行各业。我认识一家出版社的社长。他招收应届毕业生有一个条件:数学好。

工具虽好,关键还要会用。最终要回到掌握先进工具的人。软件算法工程师和计算机集群是一流企业的必备设备。

正如马克。安德森说,各行各业的一流公司都是软件公司。优秀的软件算法工程师是人才竞争的焦点。

这样,我们就很容易理解谷歌对工程师的要求。

信息处理和传递能力不断增强是知识经济的特点。《数学之美》展示了google如何运用数学和计算机网络,带领我们进入云计算和大数据时代。

知识经济时代的工作是开展各自领域的科学研究。科学研究要大胆假设,小心求证。科学研究要量化。

科学研究要有对比实验。科学研究要有数学模型。科学研究要有田野调查。

科学研究要有文献查证。科学研究要有同行评议。《数学之美》向我们介绍了自然语言分析领域的科研方法和过程。

任何一个领域,深入进去都有无数的细节。有兴趣的人不但没被这些细节吓倒,反而会兴致勃勃地研究,从而达到令人仰慕的高度。吴军先生给我们展示了这些数学和算法的细节,也展示了他的身高。

值得我学习。

数学之美读后感(三)

在网上看到有人推荐吴军博士的《数学之美》,尽管我从事社会科学研究,但对数学的推崇一直如此,所以买来一读,我的真切体验正如吴军博士在书的后记中所说,把自己“境界提升了一个层次”。

那么,对我而言,到底提升了什么境界呢?

首要的肯定是思想境界。在读这本书之前,我知道人类只有两种方式来表达这个世界上事件所形成的信息集,一种是数字,另一种是语言。整个实数的集合是无穷个,而且每个数字都是唯一的;整个世界中的事件也是无穷个的,而且每个事件也时独一无二的,这样数学中的数字集合与世界中的事件集合就构成一个一一对应的关系,所以研究数字之间的关系,实际上就是在研究世界中事件之间的关系。

语言中的概念与世界上的事件也有对应关系。然而,问题是语言中的概念集是有限的,因此它与数字集的对应只能是部分的。

计算机科学的发展,人类需要把语言处理成数字,因为计算机只能识别数字信号,所以“语言的数字化”成为计算机产生以来发展最快、而且最有创新性的领域,而许多华人科学家成为了这个领域的顶尖专家,如李开复,吴军博士是卓越的科学家之一。至此我才感到,在计算机主导的世界中,信息化就是数字化,而最难的数字化、也是最有成就的数字化,就是对人类自然语言的数字化,因为人类的信息几乎100%是用语言承载、传播的,计算机要与人对话,变成智能化的机器,首先要解决的就是语言的数字化问题。但我们在电脑上自如地输入文字时、或者拿着手机通话时,我们跟本没有意识到,那些卓越的语言科学家,早已经把我们的语言,转化成数字信号,通过输入、处理、解码的方式,让我们无障碍地联络、工作。

在我看来,语言与数字的关系是人与自然的接口。运用古希腊毕达哥拉斯学派的观点和我的理解,即数是万物之源,语言是人类之源!

看来吴军博士也在提高我对方法的理解。科学研究的思考方式,***循本质、规律、连续性思维,在语言学研究的早期,人类为了让计算机识别语言,采用建立语言规则和语言规则数据库的办法,但最终以失败告终(20世纪50-70年代),70年代后科学家采用了语言统计模型,研究取得了突飞猛进。语言统计模型的胜利再次证明了宇宙量子模型的信念:世界是由不连续的随机粒子组成的,人类几千年文明演化而来的语言系统是动态随机概率事件。

第二,物理思维已无法摆脱牛顿经典的本质思维方法,即寻找100%确定性的规律,而信息论思维则是研究如何把握不确定性现象,运用概率论和统计学是唯一的途径。其三,语言本质上就是信息传播,只有从通信模型视角才能真正理解计算机的功能,对语言的编码、处理、传输、解码是计算机的强项,计算机是永远不可能理解语言的意思的。

在《数学之美》中,吴军博士对他的老师、师兄弟、同事的经历、掌故进行了叙述,让我们了解到这些世界一流的学科家、技术精英们的为人处世品质、鲜明个性、科学素养及其管理风格。例如贾里尼克对博士生的严酷淘汰,马库斯对学生的宽宏大度,但我感到他们有一样东西是共同的,就是对科学创造、顶尖人才的识别和器重,甚至是无条件的包容。如此为人的境界才是根本,因为伟大的科学创造毕竟是人做出来的,只有崇高的人文精神之下才能造就顶尖的人才、一流的科学和技术。

观国内的学说界,官风盛行、腐败当道、人情充斥,与这些一流学说群对科学创造的赏识、对个性人才的包容,对科学探索的热诚,可谓相去甚远。

看来,我们只能寄希望于年轻一代,但愿吴博士的《数学之美》,能让我们的学子们,初步体验到科学精英们卓越的才智与情怀。

数学之美读后感 篇4

看数学之美,悟技术之道

周旭龙

一、关于此书

数学之美

记得几年前看完了《浪潮之巅》之后,便知道了吴军老师还有另外一本非常出名的著作《数学之美》,但是一直没有列入计划阅读。直到我看完了《硅谷之谜》以及《智能时代》之后,便自己上网买了一本第二版的《数学之美》。正如李开复博士所说:“在我认识的顶尖研究员和工程师里,吴军博士是极少数具有强大叙事能力和对科技、信息领域的发展变化有很深的纵向洞察力,并能进行有效归纳总结的人之一。”,正是因为在前面几本书中我看到了吴军老师强大的“讲故事”的能力,他能用通俗易懂,深入浅出的语言将技术原理讲清楚,这就十分腻害了,在《数学之美》中他也再次展示了这一点。

最近除了阅读《数学之美》,还订阅了吴军老师的《硅谷来信》,每天在早上洗漱时听一封信,在睡觉前也会听一封信,借吴军老师之眼去看世界,也可以读到一流的科学家/工程师对于各种事件非常独特的见解,以丰富自己的眼界。在此,感谢之前Sobey公司的我的前老板刘总的推荐,我也将《硅谷来信》推荐给你们(可以利用你们的碎片时间来学习)。

二、看数学之美

Part 1 简单即是美的方法

这本书一共29章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。

例如,在统计语言模型一章中,我们会发现原来使用简单的数学模型就可以解决复杂的语音识别、机器翻译等问题,但是使用很复杂的文法规则和人工智能却做不到,而这些仅仅需要我们了解概率论和统计学的知识就可以应用到工程中。(当然,最先提出将统计学方法应用到计算机应用工程问题的先驱们是真的值得我们为其鼓掌的!)此外,简单的布尔代数就是支撑搜索引擎索引的数学基础,一个漂亮的pagerank矩阵乘法迭代加上一个TF-IDF公式,就可以大程度地改善搜索结果的质量,()无一不体现出简单即是美的特点,而数学模型刚好符合这个要求。

又如,在信息的度量和作用一章,我们再次回顾了信息熵的重要性,这也是吴军老师一直在重复提及的信息论(吴军老师喜欢站在信息论的高度看问题,而不只是看到片面的表象)。一个事物内部会存在随机性,也就是不确定性,而从外部消除这个不确定唯一的办法是引入信息,而需要引入的信息量取决于这个不确定的大小。就像我们在追一个女生的时候,很多时候往往不是一拍即合,一见钟情的,只有互相表达的信息(即引入信息)足够了,才会消除各自对于对方的顾虑。等到引入的信息量消除了处在两个人之间的屏障,那么我们就可以跟对方告白宣告在一起了。

本书中介绍的所有的这些方法在吴军老师的笔下都只为了突出一句话:数学的精彩之处就在于简单的模型可以干大事。

PS:对于书中提到的大部分的数学模型都有其开源的代码实现,而我们这些工程人员只需要使用这些开源工具到自己的实际项目中即可,么么哒!

Part 2 传道授业的专家们

这本书除了在高层讲述数学方法在计算机应用(主要是语音识别等互联网应用领域)的基本原理(吴军老师称其为“道”)外,还穿插了一些传道的专家们的故事,包括:贾里尼克、辛格、马库斯以及维特比等。

比如,吴军老师的博士生导师贾里尼克教授。贾里尼克教授少年坎坷,也并非开始就投身到自然语言方面的研究,关键是他的思想和他的道。贾里克尼教授治学严谨、用心对待自己的学生,对于学生的教导,教授告诉你最多的是“什么方法不好”。这让我回想起当年看李开复博士的《世界因你而不同》一书中听到的一句话(李开复博士的导师罗迪教授给李开复讲的一句话)“我不赞同你,但我支持你”,于是也就有了李开复在语音识别领域的一鸣惊人的成就。贾里尼克的一生富于传奇色彩,先在哈佛大学、康奈尔大学教书,接着在IBM任职,之后又去约翰-霍普金斯大学教书。他的贡献主要有如下几个:第一,提出了统计语言识别的框架结构;第二,共同提出了BCJR算法;第三,领导建立了世界著名的CLSP实验室。

又如,辛格博士现任主管Google搜索的高级副总裁,并被学术界公认是当今最权威的网络搜索专家。他奉行简单的哲学,并一直坚持寻找简单有效的解决方案。令我印象最深刻的就在于,吴军博士在设计分类器时,依照吴军力求完美的态度,应该还会花很多时间去尽善尽美,但是被辛格博士止住了,“在工程上简单实用的方法最好”。这种做事情的哲学其实非常值得我们借鉴,即先帮助用户解决80%的问题,再慢慢解决剩下的20%的问题,是在工业界成功地秘诀之一。许多失败并不是因为人不优秀,而是做事情的方法不对,一开始追求大而全的解决方案,之后长时间不能完成,最后不了了之。在我们的日常工作中也是一样,在项目开发设计中,很多人不管业务场景和技术要求,一上来就这种架构那种模式,往往不考虑到底这种设计是不是大牛拉小车,最后虽然解决了问题但是交付时间被延后,既让用户不满意也让部门不满意。

三、悟技术之道

吴军老师在《数学之美》中提到:“这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余”。回到我们日常的开发工作中,作为IT工程师,程序员,要跟上技术的大潮流,需要学习的技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累,而且可能会是花了80%的时间却只得到了20%的效果,更别谈期望值最大化了,或许根本就达不到你期望值的60%。相反,比如cnblogs(博客园)在招聘工程师一直提到的“3大原理,2个协议,1种结构”(计算机原理、操作系统原理、编译原理、TCP/IP协议、HTTP协议、数据结构)却是没有怎么变化的(甚至是短时间不会变化的),而这些东西恰好是在这个浮躁的社会,我们这些所谓的计算机系的毕业生,所谓的科班毕业生所缺乏的(因为大部分人都没有在大学期间将这些东西真正地学好,而只是为了所谓的几个学分去图书馆奋战一两个周末而已)。站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的,这也是我为什么在毕业之后还要去重新温故操作系统原理和数据结构等科目的原因。

愿我们能够在底层站的更稳后,能够以一种更加全局的视角去看待上层建筑,感悟技术之道!

数学之美读后感 篇5

1,知识要学以致用。上学的时候学习概率论、运筹学这些学科,只是单纯的认为是数学知识。读过这本书才发现,原来我们日常用到的搜索、语音识别、文章分类这些功能的背后,都是数学知识在起作用。

如果读书的时候就知道这些,学习会更有目的性。结合应用情况,也能更好的理解这些概念。

2,一项技术如果注定要被淘汰,那么从现在就放弃它。从统计学的角度解决机器翻译的方法,明显优于从语法结构角度起手的方法。但是还是有很多学者钻研后者,最后白白浪费了自己多年的时间。

一个公司更应该如此。后面读《浪潮之巅》看到雅虎为了避免文章分类出错,竟然采用人工分类的方法。看到的时候,很难想象这是一家互联网公司能做出来的事情。

3,要学会发现问题的本质,从根源上解决问题。利用搜索引擎的漏洞,做所谓的SEO优化,方法千奇百怪。如果只去解决具体问题,那么就会让自己处于被动状态。发现作弊方法的特征,斩草除根,效率会提升很多。

数学之美读后感 篇6

我第一次看到这本书是两三年前,那时我正在看电子书。虽然我没有仔细阅读,但我还是第一次近距离地学习了这些互联网应用程序背后的数学原理。

前段时间,我在小孙同学的桌上看到了《数学之美》的纸质书,就向他借来读。虽说“书非借不能读也”,但实际上借了书也没能好好读,断断续续读了有一个月才读完。

由于他的工作背景,吴军博士的书集中在语言识别和搜索领域,但这并不妨碍它反映许多共同的原则。我总结了几点供大家**。

1.简单就是美

欧拉公式,最美的数据公式之一。

虽然数学在我们眼中是一门深奥的学科,但许多数学规律可以用非常简单的公式来表达。我想“简单却非常有用”或许就是数学之美的内涵吧。

书中作者给了很多“简单却非常有用”的例子,比如简单的布尔代数就是搜索引擎的数学基础;比如助google一举逆袭成为搜索老大pagerank算法就是矩阵乘法迭代结合tf-idf公式;地图导航搜索就是简单的动态规划;统计语言模型可以轻松解决看似难度、复杂度超高机器翻译、语音识别。

数学的美妙之处在于简单的模型可以做伟大的事情。数学的思维方法本质上是抽象和简化的。简单的模型怎么来?

靠的是先抽象,后简化。对于复杂的问题,我们常常可以抽象出来,用数学模型来描述。选择了合理的模型就成功了一半。

但有了模型,模型往往很简单,却很难求解。这就要求合理假设继续简化,或者通过添加合理假设来简化计算。以书中提到的马尔科夫链为例,虽然公式的求解非常困难,但只要加上适当的假设,问题就立刻大大简化了。

所以,针对纷繁芜杂的现实情况,我们一定要能时刻准备着把复杂问题简单化,一定要做到大胆合理假设,尽可能的简化问题,抓住其主要矛盾,先用很小的代价解决大部分的问题,剩下的部分再分步解决。

2.透过现象看本质

笔者认为技术可以分为两种:技术和道。做事的具体方式是技术,做事的原则和原则是道。技术容易学习,但也容易落后,所以追求技术的人一辈子都在努力工作。只有掌握了道的本质和本质,他们才能永远掌握道。做好工作没有捷径。它需要10000小时的专业训练和艰苦的工作。

数学之美读后感 篇7

在网上看到有人推荐吴军博士的《数学之美》,尽管我从事社会科学研究,但对数学的推崇一直如此,所以买来一读,我的真切体验正如吴军博士在书的后记中所说,把自己“境界提升了一个层次”。

那么,对我而言,到底提升了什么境界呢?

首要的肯定是思想境界。在未读这本书之前,我知道对于这个世界的事件形成的信息集合,人类只有两种方式可以表达,一个是数字,一个是语言。整个实数的集合是无穷个,而且每个数字都是唯一的;整个世界中的事件也是无穷个的,而且每个事件也时独一无二的,这样数学中的数字集合与世界中的事件集合就构成一个一一对应的关系,所以研究数字之间的关系,实际上就是在研究世界中事件之间的关系。语言中的概念和世界中的事件之间也是可以构成一个对应关系的,但问题是,语言中概念的集合是有限的,所以它和数字集合的对应显然只能是部分对应。

计算机科学的发展,人类需要把语言处理成数字,因为计算机只能识别数字信号,所以“语言的数字化”成为计算机产生以来发展最快、而且最有创新性的领域,而许多华人科学家成为了这个领域的顶尖专家,如李开复,吴军博士是卓越的科学家之一。至此我才感到,在计算机主导的世界中,信息化就是数字化,而最难的数字化、也是最有成就的数字化,就是对人类自然语言的数字化,因为人类的信息几乎100%是用语言承载、传播的,计算机要与人对话,变成智能化的机器,首先要解决的就是语言的数字化问题。但我们在电脑上自如地输入文字时、或者拿着手机通话时,我们跟本没有意识到,那些卓越的语言科学家,早已经把我们的语言,转化成数字信号,通过输入、处理、解码的方式,让我们无障碍地联络、工作。

我似乎感到,语言与数字的关系,就是人与自然关系的接口。套用古希腊毕达哥拉斯学派的观点,加上我的理解,即是,数是万物的本原,语言是人的本原!

吴军博士似乎也在提升我对方法的认识境界。科学研究的思考方式,习惯遵循本质、规律、连续性思维,在语言学研究的早期,人类为了让计算机识别语言,采用建立语言规则和语言规则数据库的办法,但最终以失败告终(20世纪50-70年代),70年代后科学家采用了语言统计模型,研究取得了突飞猛进。语言统计模型的胜利,再一次证明了宇宙量子模型的信念,世界是不连续的随机性的粒子构成,人类数千年文明进化出来的语言系统,就是动态的随机概率事件。其二,物理思维再也难逃牛顿的经典本质思维方法,即找寻到百分之百确定性的规律,而信息论思维是研究如何把握不确定性现象,利用概率统计是不二法门。其三,语言本质上就是信息传播,只有从通信模型视角才能真正理解计算机的功能,对语言的编码、处理、传输、解码是计算机的强项,计算机是永远不可能理解语言的意思的。

在《数学之美》中,吴军博士对他的老师、师兄弟、同事的经历、掌故进行了叙述,让我们了解到这些世界一流的学科家、技术精英们的为人处世品质、鲜明个性、科学素养及其管理风格。例如贾里尼克对博士生的严酷淘汰,马库斯对学生的宽宏大度,但我感到他们有一样东西是共同的,就是对科学创造、顶尖人才的识别和器重,甚至是无条件的包容。如此为人的境界才是根本,因为伟大的科学创造毕竟是人做出来的,只有崇高的人文精神之下才能造就顶尖的人才、一流的科学和技术。

观国内的学说界,官风盛行、腐败当道、人情充斥,与这些一流学说群对科学创造的赏识、对个性人才的包容,对科学探索的热诚,可谓相去甚远。

看来,我们只能寄希望于年轻一代,但愿吴博士的《数学之美》,能让我们的学子们,初步体验到科学精英们卓越的才智与情怀。

数学之美读后感 篇8

看到吴军的另一本书《数学之美》,激起了很深的兴趣,所以很快把书看完了,普及了很多基础的知识的同时也启发了很多想法,感觉很爽。

我自己在交大学的是工科(虽然没怎么上过课),小学、初中、高中都是一路参加数学竞赛,名次都还不错,也因此没有参加中考、高考,一路保送,自己对数学有很深的感情,同时女朋友大学也是数学系,有点后悔的大学选了个并不感兴趣的专业(交大当时允许我随便选专业,我没有跟父母商量自己选了船舶制造)。看这本书的过程中找到了很多高中在看竞赛书的感觉,里面提到的很多概率论(不等式)、图论、数论的知识是高中数学联赛复试的重点,高中的时候已经研究的很深了,不过大学荒废了之后也忘得差不多了,书中提到的很多定理还很有亲切感

书名叫做《数学之美》,显得有些太大,毕竟更多的是吴军在google做搜索相关工作用到的数学模型的介绍与总结,提到的数学部分大多集中在概率论、图论、数论领域,所以书名太大了,可能hax说得对,也许是出版社为了卖书取得名字

不得不说吴军是一个大家,文字中能够透露出大家的气势,书中不断的穿插着各种历史上的大科学家以及科技领域的大家的小故事甚至八卦,从文字中非常能够感受到吴军是一个和他们一个层次的人(即使他自己会自谦说是一个二流的工程师之类)

书中具体的模型就不介绍了,说几点我学到的知识(仅仅皮毛),能列出来的都是看完还有点印象的:

1.在互联网的世界中,信息是如何量化的,信息熵是怎么回事?有啥用?

2.搜索领域中,语言是如何统计的,尤其是如何通过概率模型进行分词

3.搜索引擎是如何工作的—网络爬虫是怎么回事儿

4.PageRank是怎么回事?为了解决什么问题?

5.密码与解密领域的数学模型,尤其提到的二战时候的各种解密的趣事儿,提到的电视剧《暗算》打算抽空看下

6.拼音输入法的数学模型

7.、文本自动分类的模型

……

看完之后最大的感受就是:

1.数学模型巨大作用,推动着新技术的发展

2.攻城师是一个伟大的职业,能够运用这些知识转化为生产力,非常牛叉

3.书中提到了很多数学模型都是在不断的进化、改良、升级,也就是说有人不断的在做优化,会有不断更好的模型、更新的技术出现,跟得上技术的发展可能也是比较重要的,否则很多人一直在做某一点上的持续优化就没有意义了。

但同时技术很大的作用是用来解决实际问题的,书中提到的各个数学模型、各种方法都是为了解决人们的需求或者业务的需求,毕竟公司不是科学研究所,所以追求通过技术直接解决用户需求或者做成易用的工具给业务人员、运营人员来间接解决用户需求是挺重要的,可能不是技术人员觉得做到80分就可以了,而是用户、使用工具的人觉得做到80分是一个重要的衡量

提到“工具”,想到赵赵说过的一句话:“不好用就等于没有”,可能就是这个点,同时运用工具的人必须好好的运用,如果用不好甚至不用就太对不起技术了。

数学之美读后感 篇9

数学的艺术

-张小镛

这本书一共31章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始,我就深深地被它清晰幽默的语言所吸引,这让我觉得如果我早点读这本书,也许数学对我来说是另一个世界。

第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的”编码-传输-解码”的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。

在第六章中,信息论给出了基于概率的信息测度。概率越小,不确定性越大,信息量越大。信息的引入可以消除系统的不确定性。同样,自然语言处理中的许多问题都是寻找相关信息。信息熵的物理意义是测量信息系统的不确定性,这与热力学中熵的概念相同。似乎不同学科之间会有很强的相似性。

事情之间有联系。我们应该学习其他知识。

这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指在时间和数值两个维度上不断变化的信号。在实际电路中,模数转换是一个非常重要的过程。经过预处理的模拟信号经模数转换成数字信号,再进行数字信号处理。

数字处理具有功能强大、抗干扰能力强、传输方便等优点。

总之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输是目前大规模集成电路中必不可少的,这是通信成功的基本要求。

作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于关注生活中的各种奇妙现象,往往忽视对其理论逻辑的演绎,这也是大多数问题的主要根源。

罗素曾经说过:”数学,如果正确地看,不但拥有真理,而且也具有至高的美”;爱因斯坦也曾说过:”纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。

”数学在所有科学领域起着基础和根本的作用。”**有数,**就有美”.在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。

吴军老师在《数学之美》中提到:”这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。

只有掌握了搜索的本质和精髓才能永远游刃有余”.回到我们日常的生活中,需要学***西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。

只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。

数学之美读后感 篇10

《数学之美》读后感:

第一次看到《数学之美》系列文章,是在2008年的google黑板报上(那个时候google还没有退出中国)。作者吴军博士当时是谷歌的研究员。后来,他担任腾讯副总裁。两年后,他回到谷歌,负责人工智能项目。现在,他已经建立了自己的风险投资公司。可以说,从学术界到实业界再到投资界,吴军是各个领域的顶尖专家。

我之所以还记得这一系列文章,是因为我一开始就在做机器科学的研究,书中的许多例子都是我在研究过程中遇到的问题。和其他数学题材书籍比起来,最难能可贵的是,吴军把抽象、深奥的数学方法解释得通俗易懂,给人以很多启发,也让人由衷感叹数学的简单之美和强大之美。

此后,吴军将专栏内容编成书,出版了两个版本。读完后,他有了更深的理解。至此,我从方**和思维方式上对此书加以总结,以对这次持续十年的阅读历程画个句号。

一、学***解决智能问题的框架。面对智能问题,我们一般可以考虑以下四个步骤来解决:1

将问题转化为数字描述。找到合适的数学模型(目标函数)。简化或近似计算复杂的数学模型;4

求解目标函数。(对于统计模型,我们也应该使用数据科学)

在当今的大数据和云计算时代,统计模型往往是解决问题的有力工具,因为我们需要解决的许多问题都是不确定的。从信息论的角度看,统计模型的本质是利用信息消除或减少不确定性。此外,摩尔定律的连续效应使计算能力得到了迅速提高,而计算成本却大大降低,这使得解决统计模型所需的大量计算成为可能。

可以说,在科技发展的这一点上,统计+数据+计算=人工智能。以前,计算能力不够,统计模型无法求解。当方程左边的三个元素都准备好了,人工智能就走到了浪尖。

二、在做事上,首先追求完成,而非完美。许多时候做事失败,不是因为人不够优秀,而是做事的方法不对。一开始追求大而全面的解决方案,过了很长一段时间都无法完成,最后什么都没有。

在工程上,要坚持寻找简单有效的解决方案,先帮用户解决80%的问题,再慢慢解决剩下的20%的问题。

这么做至少有两个好处:1.节约资源。

资深工程师往往倾向于低估简单方法的有效性,而完美的方案需要花费大量的资源和时间,但可能最后的提高不多,即性价比不高;2.简单的方案容易解释每个步骤和方法背后的道理,这样不仅便于出了问题时查错,而且容易找到今后改进的目标。

三、正确认识道和术。做事有两个境界:道和术。具体的做事方式是“术”,做事的原则和原则是“道”。在技术水平上,往往没有捷径可走,我们必须继续训练和努力工作。

道决定了工作结果的上限。在很多情况下,无论你在技术层面上多么努力,你都无法突破这一界限。此时,你需要考虑道是否正确。

对于搜索引擎的反作弊,技术层面的解决方案是找出每一个作弊实例,进行分析和消除。这种方法能解决问题,而且不需要太动脑子,但是工作量巨大,不断会有新的作弊方法出现,难以从个别现象上升到普通规律,即所谓的“头痛医头、脚痛医脚”。google从一开始,就认为反作弊实质上是个通信中解决噪音问题,并从加强通信自身的抗干扰能力、过滤噪音两方面入手,从根本上提高了搜索算法的抗作弊能力,达到了事半功倍的效果。

可见,追求艺术的人一生都非常努力。只有当他们掌握了做事的方法,他们才能永远放心。

四、找到科学的工作方法很重要。为了实现飞翔的梦想,人类的第一个想法是模仿鸟类作振动的翅膀,但这种方法根本不能让人飞翔。英国人乔治·凯利爵士看完后,通过重新审视鸟类翅膀的功能,发现了空气动力学原理,并建造了一架滑翔机,实现了人类历史上第一次载人滑翔。

从空气动力学的科学原理出发,后人终于发明了现代固定翼飞机。

在人工智能领域,也存在上述“鸟飞派”和“空气动力学派”的分别。机器翻译中最困难的问题之一是词语的模糊性。比如bush一词可以是美国**布什的名字,也可以是灌木丛。

最直接想法的是告诉计算机加一条规则:“**做宾语时,主语必须是一个人”。如果这样做的话,语法规则就多得数不清了,而且还有很多例外。

真正简单但实用的方法是从大量的文本中找到与布什一起出现的词语,比如美国、华盛顿、国会等,并与布什打交道。在翻译bush时,看看上下文中哪类相关的词多就行了。这巧妙地将人类的智能问题转变为计算机擅长的计算和统计问题。

从上面的例子可以看出,所谓的鸟类飞行学校,是指让计算机模仿人们的思维方式,试图从经验中获取智力的做法,这证明是行不通的。所谓气动学派,就是要了解智能问题的本质,让计算机通过数据和数学模型来解决智能问题。今天人工智能的所有进步都是走后一条道路的结果。

《数学之美》一书,即使对不做研究或工程的人来说,也是开卷有益的。当吴军老师如讲故事般地,把复杂的问题以简单的数学形式讲述出来的时候,你会发现,原本深奥的公式是如此亲切和栩栩如生,也让人由此坚信,任何复杂的问题,最终都可以用简单的方式去解决。

可以说,数学之美,也是化繁为简之美。作者:阴凉爱坐楼

数学之美读后感 篇11

罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。

“数学在科学的各个领域都起着基础性和基础性的作用。"**有数,**就有美".在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。

吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。

只有掌握了搜索的本质和精髓才能永远游刃有余".回到我们日常的生活中,需要学***西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。

只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。

显示全文