初三数学课件教案精选7篇。
教案课件既关系到教学步骤,也关系到教学的课程标准,所以在写的时候老师们就要花点时间咯。只要老师教案课件写得好,相信课堂教学情况也不差。怎么样教案课件才算不错呢?以下是小编为大家整理的“初三数学课件教案精选7篇 ”,欢迎大家借鉴与参考,希望对大家有所帮助。
初三数学课件教案 篇1
教学目标
1.知识与技能
能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2.过程与方法
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
3.情感态度与价值观
培养学生主动探究、合作交流的意识,严谨治学的学习态度.
重、难点与关键
1.重点:去括号法则,准确应用法则将整式化简.
2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.
3.关键:准确理解去括号法则.
教具准备
投影仪.
教学过程
一、新授
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为
100t+120(t-0.5)千米①
冻土地段与非冻土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:
利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比较③、④两式,你能发现去括号时符号变化的规律吗?
思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).
利用分配律,可以将式子中的括号去掉,得:
+(x-3)=x-3(括号没了,括号内的每一项都没有变号)
-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)
去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.
二、范例学习
例1.化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.
解答过程按课本,可由学生口述,教师板书.
例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.
思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.
解答过程按课本.
去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.
三、巩固练习
1.课本第68页练习1、2题.
2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路点拨:一般地,先去小括号,再去中括号.
四、课堂小结
去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.
五、作业布置
1.课本第71页习题2.2第2、3、5、8题.
2.选用课时作业设计.
初三数学课件教案 篇2
教学目标:
1、进一步掌握推理证明的方法,发展演绎推理能力。
2、了解勾股定理及其逆定理的证明方未能,能够证明直角三角形全等的“HL”判定定理。
3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。
教学过程:
引入:我们曾经利用数方格和割补图形的方未能得到了勾股定理。实际上,利用公理及其推导出的定理,我们能够证明勾股定理。
定理:直角三角形两条直角边的平方和等于斜边的平方。
如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,
延长CB至点D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE,则△ABC≌△BED。
∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等)。
∴四边形ACDE是直角梯形。
∴S梯形ACDE=(a+b)(a-b)=(a+b)2
∴∠ABE=180°-∠ABC-∠EBD=180°-90°=90°
AB=BE
∴S△ABC=c2
∵S梯形ACDE=S△ABE+S△ABC+S△BED,
∴(a+b)2=c2+ab+ab即a2+ab+b2=c2+ab+ab
∴a2+b2=c2
反过来,在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?
已知:如图,在△ABC,AB2+AC2=BC2,求证:△ABC是直角三角形。
证明:作出Rt△A’B’C’,使∠A=90°,A’B’=AB,A’C’=AC,则
A’B’2+A’C’2=B’C’2(勾股定理)
∵AB2+AC2=BC2,A’B’=AB,A’C’=AC,
∴BC2=B’C’2
∴BC=B’C’
∴△ABC≌△A’B’C’(SSS)
∴∠A=∠A’=90°(全等三角形的对应角相等)
因此,△ABC是直角三角形。
定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为另一个命题的互逆命题,其中一个命题称为另一个命题的逆命题。
一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理。这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
初三数学课件教案 篇3
一学期的工作结束了,可以说紧张忙碌却收获多多。回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:
一、在备课方面
在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。
二、在教学过程方面
在课堂教学中我一直注重学生的参与。让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。
三、工作中存在的问题
1)、教材挖掘不深入。
2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。
3)、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导
4)、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。
四、今后努力的方向
1)、加强学习,学习新教学模式下新的教学思想。
2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。
3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。
4)、加强转差培优力度。
5)、加强教学反思,加大教学投入。
一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。今后我会更加努力提高自己的业务水平。
初三数学课件教案 篇4
教学目标:
1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。
2、收集统计在生活中应用的例子,整理收集数据的方法。
3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。
教学过程:
一、课前预习,出示预习提纲:
1、我们学习了哪几种统计图?
2、这几种统计图各有什么特点?
3、概率的知识有哪些?
二、展示与交流
(一)提出问题
1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)
2、师:先独立列出几个你想调查的问题。(写在练习本上)
3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)
4、接着全班汇报交流(师罗列在黑板上)
师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)
(二)收集数据和整理数据
1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。
2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?
(三)开展调查
1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。
2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)
3、全班汇总、整理、归纳各小组数据。(板书)
4、师:分析上面的数据,你能得到哪些信息?
5、师:根据整理的数据,想一想绘制什么统计图比较好呢?
6、师:根据这些信息,你还能提出什么数学问题?
(四)回顾统计活动
1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?
师板书:提出问题——收集数据——整理数据——分析数据——作出决策。
2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)
指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?
3、结合生活中的例子说说收集数据有哪些方法?
(1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来的实例)来说说自己的方法。
(2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。
4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?
初三数学课件教案 篇5
学习目标:1.会从三种统计图中对数据的识别2.会区别三种统计图的优缺点3、根据统计图解决实际问题
一、自主探究
1、图中给出了两种品牌的酒近年的价格变化情况,哪一种酒的价格增长较快?这与图象给你的感觉一致吗?为什么图象给人这样的感觉?
2、下图中反映了我国1998年和1999年图书、杂志和报纸的出版印张数之间的比例状况。根据该图小明认为,我国1998年的图书出版印张数比1999年多,你同意他的看法吗?为什么?
4、小波学习小组于20xx年10月调查了某城市部分居民的家庭人口数,并绘出了下面的扇形统计图。求部分居民家庭人口数的众数和平均数。
5、学校快餐店有2元、3元、4元三种价格的饭菜供师生选择(每人限购一份),下图是某月的销售情况统计图,该校师生购买饭菜费用的平均费用的平均数和众数分别是什么?
6、某厂生产A、B、C三种型号的电视机,20xx年这三种型号电视机的销售额依次为10亿元、2亿元、3亿元,为了应对激烈的市场竞争,20xx年该厂决定降低电视机的销售价格,A、B、C三种型号的电视机分别降价10%,30%,20%,因此,该厂宣称其产品平均降价20%,你认为该厂的说法正确吗?如果不正确,你认为怎样表述才比较准确?
3、下图反映了我国1999年全国图书、杂志和报纸的出版印张数条形统计图后,观察并思考以下几个问题:
(1)直观地看这个条形统计图,1999年哪种出版物总印张数最多?哪种出版物总印张数最少?最多的是最少的几倍?
(2)实际上,最多的大约是最少的几倍?图中所表示出来的直观情况与此相符吗?
(3)这个图为什么会给人造成这样的感觉?
(4)为了更直观、清楚地反映实际情况,上图应怎样的改动?
7.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图4-10),并规定:顾客每购买100元后的商品,就能获得一次转盘的机会。如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得100元,50元,20元的购物卷,凭卷可以在该商场继续购物。如果顾客不愿意转转盘,那么可以直接获得购物卷10元.转转盘和直接获得购物卷,你认为哪种方式对顾客更划算?
8.(1)将上题的图改成图4—11的转盘,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客分别获得100元,50元,20元的购物卷。与图4-11的转盘相比,哪个转盘对顾客更合算?如果改用图4-12的转盘呢?
(2)不用实验的方法,你能求出每转动一次转盘所获购物卷金额的平均数吗?
初三数学课件教案 篇6
的函数,叫做二次函数。其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。
实质上,函数的名称都反映了函数表达式与自变量的关系.
三、课堂训练(略)
四、小结归纳:
学生谈本节课收获
1.二次函数概念
2.二次函数与一次函数的区别与联系
3.二次函数的4种常见形式
五、作业设计
㈠教材16页1、2
㈡补充:
1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函数的是
2、用一根长60cm的铁丝围成一个矩形,矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式是____________.
3、小李存入银行人民币500元,年利率为x%,两年到期,本息和为y元(不含利息税),y与x之间的函数关系是_______,若年利率为6%,两年到期的本利共______元.
4、在△ABC中,C=90,BC=a,AC=b,a+b=16,则RT△ABC的面积S与边长a的关系式是____;当a=8时,S=____;当S=24时,a=________.
5、当k=_____时,是二次函数.
6、扇形周长为10,半径为x,面积为y,则y与x的函数关系式为_______________.
7、已知s与成正比例,且t=3时,s=4,则s与t的函数关系式为_______________.
8、下列函数不属于二次函数的是()
A.y=(x-1)(x+2)B.y=(x+1)2C.y=2(x+3)2-2x2D.y=1-x2
9、若函数是二次函数,那么m的值是()
A.2B.-1或3C.3D.
10、一块草地是长80m、宽60m的矩形,在中间修筑两条互相垂直的宽为xm的小路,这时草坪面积为ym2.求y与x的函数关系式,并写出自变量x的取值范围.
初三数学课件教案 篇7
直接开平方法
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重点
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
难点
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、复习引入
学生活动:请同学们完成下列各题.
问题1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根据完全平方公式可得:(1)164;(2)42;(3)(2p)22p.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=-2
例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接开平方,得:x+3=±
即x+3=,x+3=-
所以,方程的两根x1=-3+,x2=-3-
解:略.
例2市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材第6页练习.
四、课堂小结
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±,达到降次转化之目的.若p
五、作业布置
教材第16页复习巩固1.