数学运算是行测中算较难的一个模块,且得分率较低,考生在答题时普遍反映在运算时间里消耗比较大,因此考生在备考时熟练掌握常规解法极其重要。在复习诸类题型时,大家可以根据中的例题和指导以及历年真题进行,也组织了不少此类题型供广大考生练习。
【例1】小张和小王同时骑摩托车从A地向B地出发,小张的车速是每小时40公里,小王的车速是每小时48公里。小王到达B地后立即向回返,又骑了15分钟后与小张相遇。那么A地与B地之间的距离是多少公里?( )
A.144 B.136
C.132 D.128
【解析】在这个题目中,两个人的速度是不一样的,而且题目中给出“同时出发”“相遇”这样的字眼,所以时间一定是不变量。拿时间作为等量关系,则甲的路程是S+12,乙的路程是S-12,速度分别是48和40,那么用时间相等列式应该表示成:(S+12)/48=(S-12)/40,解得S=132。
【例2】有甲、乙、丙三人,甲每小时走80公里,乙每小时走70公里,丙每小时走60公里。现在甲从A处出发,乙、丙两人从B处同时出发相向而行,在途中甲与乙相遇15分钟后,甲又与丙相遇。求AB两地的距离。( )
A.315公里 B.525公里
C.465公里 D.455公里
【解析】这是一个相遇问题,在这个题目中,三人速度都有,很明显是不一样的。我们知道,在相遇追及问题里,相遇距离就是两地之间的整个全程,不管是甲丙之间还是甲乙之间,都是这一个全程;也就是说,在这个题目中路程是潜在的不变量,变量是速度和时间。那么我们围绕路程这个等量关系列出两个表示路程的式子就可以解决:设甲乙相遇时间是T,那么甲丙相遇时间就是T+1/4,利用相遇公式有(80+70)T=(80+60)(T+1/4)。解得T=3.5,因此整个距离是525。
【例3】王亮与同学约好,下午4点半到球类馆打乒乓球,为此,他们在早上8点钟每人都将自己的表对准,王亮于4点半准时到达,而同学却没来。原来同学的表比正确时间每小时慢4分钟,如果同学按自己的手表4点到达,那么王亮还得等多少时间(正确时间)?
【解析】此题是关于时钟正确与否的题目,这类题目相对于前面来说是比较难的类型,需要实际进行考虑,同样考虑时间速度和路程之间的关系,这里路程始终是不变的,变的就是速度。抓住关键点:路程、速度、时间。
1. 路程:早8点到晚4点半,分针总共转的角度为:360×(16.5-8)=3060度;
2. 速度:由于每小时同学时间慢4分钟,则正确时候分针的速度为360度/每小时,现在的速度为360–4×6=336度/小时=5.6度/分钟;
3. 时间:未知
时间 = 路程÷速度,即有3060÷5.6=546 分钟=9小时6 分钟
即同学要到下午5点6 分钟才能到,则有,王亮还将等同学36 分钟。
注:初次接触钟表问题似乎会觉得它很难,其实只要弄清楚时间,速度和路程的各自的特点,就能有效的解决时钟问题。
【例4】有一只钟,每小时慢3分钟,早晨4点30分的时候,把钟对准了标准时间,则钟走到当天上午10点50分的时候,标准时间是( )
A、11点整 B、11点5分 C、11点10分 D、11点15分
【解析】此题正确答案为C,这是一道非常典型的快慢表问题,这里面涉及两块表,一块好表,一块坏表(慢表)。好表分针速度为60分格/小时,而我们的坏表每小时比好表慢3分钟,也就是说坏表的分针每小时只走57分格,即坏表分针速度为57分格/小时。根据题意,坏表从早晨4点30分走到上午10点50分,实际上分针走了380分格,即坏表分针的路程为380分格。不管好表还是坏表,他们所经历的标准时间是相同的,所以根据时间相等可以列出以下方程,设好表分针的路程为X,则X/60=380/57,解得X=400,也就是说好表的分针比坏表多走(400-380)分格,也就是说标准时间应该比坏表所显示的时间快20分钟,所以标准时间应该是11点10分。本题有很多考生容易得到错误答案(11点09分),这主要就是由于没有分清楚每块表分针各自对应的速度与路程。
阅读此文的人还阅读了:
更多