您的当前位置:首页正文

福建公务员考试网:数学运算八大解题法

2022-06-15 来源:知库网
  数学运算是公务员考试中绝大部分考生花费时间长、正确率低的一个部分,而时间和正确率往往取决于解题方法是否简便、有效。无论是单纯的算术式子,还是文字型应用题,一般来说,通过对题干数量关系的准确分析以后,最终都被转化为对算式或者方程的处理和计算。因此,理解和掌握大量的计算技巧,对提高数学运算的解题速度至关重要。在政法干警招录考试及福建公务员考试中,有几种方法经常用到,它们适用于大多数题型,希望考生能熟练掌握这些方法,并灵活运用。在此,编写小组的老师进行一一介绍。
  一、特值法
  所谓特值法,就是在某一范围内取一个特殊值,将繁杂的问题简单化,这对于解有关不需整个解题思维过程的客观题十分有效。我们常常会用到特殊值、特殊数列、特殊函数、特殊点、特殊方程等方法来找到特殊值,直接带入,或者考察特例、检验特例、举反例等等,总之就是把这个题目用特殊的问题进行检验,然后进行猜想,这是特殊化猜想。
  【例题1】 一只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少 。问船在静水中开足动力桨行驶的速度是人工划船速度的多少倍?
  A.2    B.3    C.4    D.5
  解析:从命题分析来看,题中只出现相关量的倍数关系,要求的也是两个量的倍数关系,所以相关量的具体值不影响最后结果,可用特殊值法,便于计算。
  设水速为1,则人工划船顺流而下的速度是3,人工划船在静水中的速度是3-1=2。开动力桨逆水行驶与人工划船顺水行驶的时间比为3∶5,则二者速度比为5∶3,开动力桨逆水行驶的速度为5,在静水中的速度为5+1=6。因此船在静水中开足动力桨行驶的速度是人工划船速度的6÷2=3倍,选B。
  二、代入排除法
  政法干警招录考试行测部分全部都是选择题,而代入排除法是应对选择题的有效方法。
  代入排除法广泛运用于多位数问题、不定方程问题、剩余问题、年龄问题、复杂行测问题、和差倍比问题等等。
  【例题2】甲乙两个工程队,甲队的人数是乙队人数的70%。根据工程需要,现从乙队抽出40人到甲队,此时乙队比甲队多136人,则甲队原有人数是(    )。
  A.504人          B.620人              C.630人               D.720人
  解析:此题答案为A。甲队人数是乙队的70%,则甲队人数一定是7的倍数,这样可以排除B、D,缩小判断范围。代入C项,甲队人数是10的倍数,甲队是乙队人数的70%,则乙队人数也是10的倍数,从乙队抽出40人之后,甲乙两队相差的人数必然是10的倍数,这与题中条件不符,排除C,选择A。
  三、尾数法
  尾数法是指在不直接计算算式各项值的情况下,只计算算式各项的尾数,从而得到结果的尾数,以确定选项中符合条件的答案的方法。尾数法一般适用于加、减、乘(方)这三种情况的运算。一般选项中四个数的尾数各不相同时,可以优先考虑尾数法。
  两个数的尾数之和等于和的尾数,两个数的尾数之差等于差的尾数,两个数的尾数之积等于积的尾数。
  尾数本质上是原数除以10的余数,尾数法本质上是同余的性质。
  特别提示:算式中如果出现了除法,请尽量不要使用尾数法。
  【例题3】173×173×173-162×162×162=(   )。
  A.926183           B.936185
  C.926187           D.926189
  [解析]D。此题直接计算,计算量很大,而且容易算错。考虑到选项中各项尾数均不相同,因此考虑使用尾数法。选项四个数的尾数各不相同,直接计算各项尾数,3×3×3-2×2×2=27-8=19;可知,计算结果的尾数应该是9,因此只能选D。
  四、方程法
  方程法是解决大部分算术应用题的工具,方程法未必是最好的方法,却是最适合普罗大众的方法。不定方程是近年来福建公务员考试的重点,解决不定方程主要用到的是整数的奇偶性、质合性与尾数性质。
  【例题4】 超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?
  A.3     B.4     C.7     D.13
  解析:设大包装盒用了x个,小包装盒用了y个。依题意,12x+5y=99。12x是偶数,则5y是奇数,5y的尾数是5。因此12x的尾数是4,x的尾数为2或7。当x=2时,y=15,两者之差为13,选D。当x=7时,y=3,题干条件说用了十多个盒子,排除。
  五、图解法
  图示有助于理解,很多题目用到了线段图,函数图则使得线性规划问题变得直观。图解法对揭示抽象条件有很大优势。
  【例题5】 草地上插了若干根旗杆,已知旗杆的高度在1至5米之间,且任意两根旗杆的距离都不超过他们高度差的10倍。如果用一根绳子将所有旗杆都围进去,在不知旗杆数量和位置的情况下,最少需要准备多少米长的绳子?
  A.40    B.60    C.80    D.100
  解析:旗杆最高为5米,最矮为1米。因此任意两旗杆间的距离不超过(5-1)×10=40米。以最矮的旗杆为原点,最矮的旗杆与最高的旗杆连线为x轴建立直角坐标系。
  当这两个旗杆间距最大时,如下左图所示。设其余任意旗杆高度为a。要满足与1米旗杆间距离不超过它们高度差的10倍,应在下图左边的圆范围内。要满足与5米旗杆间距离不超过它们高度差的10倍,应在下图右边的圆范围内。同时满足条件的旗杆只能位于两个旗杆的连线上。此时需要40×2=80米可把它们都围进去。
  
  若两个旗杆间距小于40米,如右图所示,其余旗杆应该在两圆相交的阴影范围内分布,此时需要2×[10(a-1)+10(5-a)]=80米。因此不论旗杆怎样分布,都需要至少80米长的绳子来保证把全部旗杆围进去。
  六、十字交叉法
  十字交叉法是加权平均数的简便算法,在平均数一节已经反复强调,通过下面这道题可知用这种方法求加权平均数的问法在不断变化。
  【例题6】 某市气象局观测发现,今年第一、二季度本市降水量分别比去年同期增加了11%和9%,而两个季度降水量的绝对增量刚好相同。那么今年上半年该市降水量同比增长多少?
  A.9.5%  B.10%  C.9.9%  D.10.5%
  解析:利用十字交叉法,设该市上半年降水量总体增长为x%
   
  因此,去年一二季度降水量之比为(x-9)∶(11-x)。根据绝对增量相等可得,(x-9)×11%=(11-x)×9%,解得x%=9.9%,选C。
  七、分合法
  分合法就是利用分与合两种不同的思维解答数学运算的方法。所谓“分”,就是将一个问题拆分成若干个小问题,然后从局部来考虑每个小问题;所谓“合”,就是把若干问题合在一起,从整体上思考这些问题。也就是说,“分”就是局部考虑,是拆分;“合”是整体考虑,是整合。分合法一般适用于排列组合与概率问题、解方程等。
  分合法常用的两种思路为分类讨论和整体法。
  (一)分类讨论
  分类讨论,是指当不能对问题所给的对象进行统一研究时,需要对研究对象按某个标准进行分类,逐类研究,最后将结论汇总得解的方法。在进行分类讨论时,要注意分类标准统一,分类情况不遗漏、不重复,不越级讨论。分类讨论与加法原理经常一起使用,一般是多种情况分类讨论以后,再利用加法原理求出总的情况数。
  (二)整体法
  整体法与分类讨论正好相反,它强调从整体上来把握变化,而不是拘泥于局部的处理。
  整体法有两种表现形式:
  1.将某一部分看成一个整体,在问题中总是一起考虑,而不单独求解;
  2.不关心局部关系,只关心问题的整体情况,直接根据整体情况来考虑关系。这种形式经常用于平均数问题。
  八、极端法
  极端法是指通过考虑问题的极端状态,探求解题方向或转化途径的一种常用方法。极端法一般适用于鸡兔同笼问题、对策分析类问题等。
  在公务员考试中运用极端法的情况主要有分析极端状态和考虑极限图形与极限位置两种情况。
  (一)分析极端状态
  先分析并找出问题的极限状态,再与题干条件相比较,作出相应调整,得出所求问题的解。公务员考试中的鸡兔同笼问题以及出现“至多”“至少”等字样的题,均可通过分析问题的极端状态来求解。
  (二)考虑极限图形与极限位置
  极限图形:主要是利用一些几何知识。例如,对于空间几何体,当表面积相同时,越趋近于球体的体积越大;同理,当体积相同时,越趋近于球体的表面积越小。
  极限位置:首先找到图形中满足条件的极端位置,再判断极端位置与题中所求之间的关系,进而求出题目答案。
    

更多
  |  
相关文章
相关问题
显示全文