在的日常复习备考中,考生的主要任务不仅仅看自己做了多少道题,而应该熟悉各种题型,明晰解题思路,总结解题技巧,提高解题速度,提升应试能力。在此过程中,形成适合自己的便捷有效的解题技巧应该是重中之重。因此,总结并掌握一定的解题思路对复习模块有很大帮助。
通过对历年真题的分析总结,我们可以总结出数字推理以下解题思路:
回到数列本身根据推算找规律
回到数列本身推导时,要看数列的后项是不是它相邻的前几项的和(或差),或是前几项的和(或差)加上(减去)一个常数或一个简单的数列构成的。这样的数列常见于加减复合数列、加减乘除复合(摆动)数列,难度比较大,考生在复习备考时多做几道题、多总结,熟悉了其组合方式或内在的规律,此类数字推理题就不难解决。
例:38,24,62,12,74,28,( )
A. 74 B. 75 C. 80 D. 102
【答案:D】题干中的数字有七项,因此可以考虑从长数列或分组数列方面入手解题。但无论两两分组还是取奇数项与偶数项单独考虑都无规律可循。观察前三项可以发现,38+24=62,可以看出本题具备和数列的特征;继续看后面数字,可以发现62+12=74,且只有奇数项的数字有此做和的关系。因此,我们可以总结出本题的规律为:相邻的奇数项与偶数项的和为下一个奇数项的值。由此规律我们可以推出( )=74+28=102
需要说明的是:近年来数字推理题的变化趋势是越来越难,需综合利用两个或者两个以上的规律才能得到答案。因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间时再返回来解答这些难题。这不但节省了时间,保证了简单题目的得分率,而且解简单试题时的某些思路、技巧、方法会对难题的解答有所帮助。有时一道题之所以解不出来,是因为我们的思路走进了“死胡同”,无法变换角度进行思考。此时,与其“卡”死在这里,不如抛开这道题先做其它的题目。做这些难题时,可以利用“试错法”。很多数字推理题不太可能一眼就看出规律、找到答案,而是要经过两三次的尝试,逐步排除错误的假设,最后找到正确的规律。
凑数字法
一般数列运用上述方法都可以推导出结果的。但是近几年新出现的一些题型,运用上述方法还不容易直接解题,甚至出现没法下手解题。这里再介绍一种非常有用的解题方法,即“凑数字法”。这里凑的数字的来源一是数列本身,即数列中的原数字(即通过数列中相邻的数字的计算,查找数列中各数之间隐含的计算法则,而这个运算法则就是所要找的规律),二是数列中每一项的序数,即每一项在数列中的第1、2、3、4、5……项的项数。
1. 利用数列中的原数凑数字
例:157,65,27,11,5,( )
A. 4 B. 3 C. 2 D. 1
【答案:D】分析本题所给数列可以发现,数列单调递减,数列数字波动越来越小,用常规的平方、立方、减法等数列及其变式都无法找到规律,对此类试题,就可以考虑采用“凑数字法”的思路求解。
根据上面总的提示及思路,要“凑”的数字首先在数列本身去找,要“找”的规律就是数字之间运算的法则。而要运算则最少必须有三个数字,那么可以尝试着对相邻的三个数字运用“凑”的方法进行计算。那就是说前三个数字157、65、27之间有什么样的关系呢?或者说65和27经过什么样的计算能得到157呢?(当然思考157和65之间经过什么样的运算能得到27,或157和27之间经过什么样的运算能得到65,但是那样的话肯定要经过减法等运算,一是增加了解题的难度,二是容易出错,一般人运用加法、乘法计算时要比运用减法、除法快捷得多,而且不容易出错。
这里要注意的是:在解数字推理时要把握一个原则:“能加不减,能乘不除”,即能用加法计算的尽量用加法计算,而不要用减法去运算;能用乘法运算的就不用除法运算。如果能想到这一点的话,问题就变得简单多了,因为稍稍推算就可以发现它们之间有这样的运算65×2+27=157。那么再往后推一下,看第2、3、4个数字之间是不是也有这样的规律,演算一下发现第二组数字65、27和11之间也有同样的规律,即27×2+11=65。那么再用第三组数字验证一下是不是该数列都有这样的规律,如果第三组也有的话,那么这个运算法则就是本数列的规律了。经过推算发现第三组数字27、11和5也有同样的运算法则,即11×2+5=27,那么本数列的规律是:第一个数等于相邻的后一个数的2倍再加上第三个数。那么所求的未知数为11-5×2=1,选D。
例:
A. 12 B. 14 C. 16 D. 20
【答案:C】这是一道图形题。本题同样可以用“凑数字,找规律”的思路和方法求解。同上题,凑的数字同样首先在数列本身去找,要找的规律就是数字之间运算的法则。经过演算可以发现26=(2+8-2)×2,第二个三角形中也有同样的规律10=(3+6-4)×2,即本题数列的规律是:三角形内中间数字等于三角形底角两个数字之和减去顶角数字的差的2倍。按照相应的数字的位置和法则进行计算,可知所求未知数为(9+2-3)×2=16,选C。
数学运算的考查点并非在于应试者的知识积累,而在于应试者的反应速度及应变能力。数学运算的题目并非是要求应试者用复杂的数学公式来进行运算,而是要求应试者根据题目所给条件,巧妙运用简便的方法来进行解答。通过以上解题思路方法的介绍,希望地广大考生有所帮助!
阅读了此文的人还阅读了