发布网友 发布时间:2022-04-19 12:56
共4个回答
热心网友 时间:2022-05-13 03:53
贫寒家庭出身
高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色
各样的杂工,如护堤员、建筑工等等。父亲由於贫穷,本身没有受
过什麼教育。
母亲在三十四岁时才结婚,三十五岁生下了高斯。她是一名石
匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能
手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所
知道的一些知识传授给他。而父亲可以说是一名”大老粗”,认为
只有力气能挣钱,学问对穷人是没有用的。
高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说
他在还不会讲话的时候,就已经学会计算了。
他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工
人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算
出来。
父亲念出钱数,准备写下时,身边传来微小的声音:「爸爸!
算错了,钱应该是这样.....。」
父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地
方是没有人教过高斯怎麼样计算,而小高斯平日靠观察,在大人不
知不觉时,他自己学会了计算。
另外一个著名的故事亦可以说明高斯很小时就有很快的计算能
力。当他还在小学读书时,有一天,算术老师要求全班同学算出以
下的算式:
1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?
在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答
案5050,而其他孩子算到头昏脑胀,还是算不出来。最后只有高斯
的答案是正确无误。
原来 1 +100= 101
2 + 99 = 101
3 + 98 = 101
.
.
.
50 + 51 = 101
前后两项两两相加,就成了50对和都是 101的配对了
即 101 × 50 = 5050。
按:今用公式
表示 1 + 2 + ... + n
高斯的家里很穷,在冬天晚上吃完饭后,父亲就要高斯上
床睡觉,这样可以节省燃料和灯油。高斯很喜欢读书,他往往
带了一捆芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉
卷成的灯芯,用一些油脂当烛油,於是就在这发出微弱光亮的
灯下,专心地看书。等到疲劳和寒冷压倒他时,他才钻进被窝
睡觉。
高斯的算术老师本来是对学生态度不好,他常认为自己在
穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴
。但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高
斯有什麼帮助。
他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴
和比他大差不多十岁的老师的助手一起学习这本书。这个小孩
和那个少年建立起深厚的感情,他们花许多时间讨论这里面的
东西。
高斯在十一岁的时候就发现了二项式定理 ( x + y )n的一般
情形,这里 n可以是正负整数或正负分数。当他还是一个小学生
时就对无穷的问题注意了。
有一天高斯在走回家时,一面走一面全神贯注地看书,不
知不觉走进了布伦斯维克 ( Braunschweig ) 宫的庭园,这时布伦
斯维克公爵夫人看到这个小孩那麼喜欢读书,於是就和他交谈
,她发现他完全明白所读的书的深奥内容。
公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖
的领地有一个聪明小孩的故事,於是就派人把高斯叫去宫殿。
费迪南公爵 ( Duke Ferdinand ) 很喜欢这个害羞的孩子,也
赏识他的才能,於是决定给他经济援助,让他有机会受高深教
育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反
对孩子读太多书,他总认为工作赚钱比去做什麼数学研究是更
有用些,那高斯又怎麼会成材呢?
高斯的学校生涯
在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名
的学院(程度相当於高中和大学之间)。在那里他学习了古代
和现代语言,同时也开始对高等数学作研究。
他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的
作品。他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积
分理论。
1795年10月他离开家乡的学院到哥庭根 ( Gottingen )去念大
学。哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯
。许多外国学生也到那里学习语言、神学、法律或医学。这是
一个学术风气很浓厚的城市。
高斯这时候不知道要读什麼系,语言系呢还是数学系?如
果以实用观点来看,学数学以后找生活是不大容易的。
可是在他十八岁的前夕,现在数学上的一个新发现使他决
定终生研究数学。这发现在数学史上是很重要的。
我们知道当 n ≥ 3 时,正 n 边形是指那些每一边都相等,
内角也一样的 n 边多边形。
希腊的数学家早知道用圆规和没有刻度的直尺画出正三、
四、五、十五边形。但是在这之后的二千多年以来没有人知道
怎麼用直尺和圆规构造正十一边、十三边、十四边、十七边多
边形。
还不到十八岁的高斯发现了:一个正 n 边形可以用直尺和
圆规画出当且仅当 n 是底下两种形式之一:
k= 0,1,2, ...
十七世纪时法国数学家费马 ( Fermat ) 以为公式
在 k = 0, 1, 2, 3, ....给出素数。(事实上,目前只确定 F0,F1,F2,F4
是质数,F5不是)。
高斯用代数方法解决了二千多年来的几何难题,而且找到
正十七边形的直尺与圆规的作法。他是那麼的兴奋,因此决定
一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上
一个正十七边形,以纪念他少年时最重要的数学发现。
1799年高斯呈上他的博士论文,这论文证明了代数一个重
要的定理:任何一元代数方程都有根。这结果数学上称为”代
数基本定理”。
事实上在高斯之间有许多数学家认为已给出了这个结果的
证明,可是没有一个证是严密的,高斯是第一个数学家给出严
密无误的证明,高斯认为这个定理是很重要的,在他一生中给
了一共四个不同的证明。高斯没有钱印刷他的学位论文,还好
费迪南公爵给他钱印刷。
二十岁时高斯在他的日记上写,他有许多数学想法出现在
脑海中,由於时间不定,因此只能记录一小部份。幸亏他把研
究的成果写成一本叫<算学研究>,并且在二十四岁时出版,
这书是用拉丁文写,原来有八章,由於钱不够,只好印七章,
这书可以说是数论第一本有系统的著作,高斯第一次介绍”同
余”这个概念。
Top
巴比仑
灿烂的古巴比仑文化
发源於现在土耳其境内的底格里斯河(Tigris)和幼发拉底
河 (Euphrates) ,向东南方流入波斯湾。河流经过现在的叙利
亚和伊拉克。
现在我们生活的「星期制度」是源於古代巴比仑。巴比仑
人把一年分为十二个月,七天组成一个星期,一个星期的最后
一天减少工作,用来举行宗教礼拜,称为安息日-这就是我们
现在的礼拜日。
我们现在一天二十四小时,一小时有六十分,一分有六十
秒这种时间分法就是巴比仑人创立的。在数学上把圆分三百六
十度,一度有六十分这类六十进位制的角度衡量也是巴比仑人
的贡献。
古代巴比仑人的书写工具是很奇特的,他们利用到处可见
的粘泥,制成一块块长方薄饼,这就是他们的纸。然后用一端
磨尖的金属棒当笔写成了「楔形文字」 (cuneiform) ,形成泥
板书。
希腊的旅行家曾记载巴比仑人为农业的需要而兴建的运河
,工程的宏大令人惊叹。而城市建筑的豪美,商业贸易的频繁
,有许多人从事法律、宗教、科学、艺术、建筑、教育及机械
工程的研究,这是当时其他国家少有的。
可是巴比仑盛极一时,以后就衰亡了,许多城市埋葬在黄
土沙里,巴比仑成为传说神话般的国土,人们在地面上找不到
这国家的痕迹,曾是闻名各地的「空中花园」埋在几十米的黄
土下,上面只有野羊奔跑的荒原。
到了十九世纪四十年代,法国和英国考古学家发掘了古城
及获得很多文物,世人才能重新目睹这个地面上失踪的古国,
了解其文化兴盛的情况。特别是英国人拉雅( Loyard)在尼尼
微(Nineveh)挖掘到皇家图书馆,两间房藏有二万六千多件泥
板书,包含历史、文学、外交、商业、科学、医药的记录。巴
比仑人知道五百种药,懂得医治像耳痛及眼炎,而生物学家记
载几百种植物的名字及其性质。化学家懂得一些矿物的性质,
除了药用外,而且还利用提炼金属,制陶器及制玻璃的水平很
高。
有这样高文化水平的民族,他们的数学也该是不错吧?这
里就谈谈他们这方面的贡献。
巴比仑人的记数法
巴比仑人用两种进位法:一种是十进位,另外一种是六十
进位。
十进位是我们现在普通日常生活中所用的方法,打算盘的
「逢十进一」就是基於这种原理。
巴比仑人没有算盘,但他们发明了这样的「计算工具」协
助计算(图一)。在地上挖三个长条小槽,或者特制有三个小
糟的泥块,用一些金属小球代表数字。
比方说:巴比仑城南的农民交来了 429 袋的麦作为国王的
税金,而城东的农民交来了 253 袋的麦。因此国王的仓库增加
了 429 + 253 = 682 袋粮食。我们用笔算一下子就得到答案,可
是巴比仑人却是先在泥板上的小槽上分别放上:4 个, 2 个,
9 个的金属球,这代表了 429。然后在置放 4 个金属球的小槽
上添加 2 个小球,中间槽上添加 5 个小球,最后的小槽上添加
3 个小球。
现在最后一列的小槽上有 12 个小球,巴比仑人就取掉十
个,在中间那个槽里添上 1 个小球-这也就是「逢十进一」。
最后泥板上的数字 682 就是加的结果。这不是很好玩吗?
(图二)我们可以利用这方法以实物教儿童认识一些大数的加
法。
六十进位制目前是较少用到,除了在时间上我们说:一小
时 = 60 分,1 分 = 60 秒外,在其他场合我们都是用十进位制。
可是你知道吗?就是古代的巴比仑人定下一年有三百六十
五天, 十二个月,一个月有二十九天或三十天,每七天为一个
星期,一个圆有三百六十度,一小时有六十分,一分有六十秒
等等,我们现代还是继续采用。
考古学家在一块长三又八分之一吋,宽二吋,厚四分之三
吋的泥板书上发现了巴比仑人的记数法。
这泥板的中间从上到下有像(图四)的符号:读者可以看
出这是代表:1,2,3,4,5,6,7,8,9,10,11,12,13。
这泥板书受到盐和灰尘的侵蚀,但可以看到泥板书的右边
前五行是形如:
很明显的这应该代表 10,20,30,40,50。
可是接下来的却是这样的符号:
如果我们前面知道的符号是写成:
1 1,10 1,20 (缺三个) 2 2,10
这是什麼意思呢?考古学家猜测那几个符号照上面10,20,30,
40,50的次序应该是代表60,70,80,(缺掉的90,100,110),120,130。
是否那个 1 的符号也可以代表 60 呢?如果是的话那麼 1,10
就是代表 60 + 10 = 70。而 1,20 是代表 60 + 20 = 80。而那个
将代表 2 × 60 = 120了。很明显 2,10是代表 120 + 10 = 130。
这样的猜测是合理的,由於巴比仑人没有符号表示零,而
他们采用的是 60 进位制,因此同样一个符号可以代表 1 或 60。
没有零符号在记数上是很容易产生误会,比方说:可以
看成 1,20 = 1 × 60 + 20 = 80 或 1,0,20 = 1 × 602 + 0 × 60 + 20 = 3620。
到了两千年前巴比仑人才采用表示零。
因此像代表 2,3,0,41 即 2 × 603 + 3 × 602 + 41 = 442841
从此巴比仑人小於 60 的数字的记数可以看出他们懂得「位值原理」。
巴比仑人怎样进行除法运算?
从一些泥板书里可以看出底下的对应。
2 30 16 3,45 45 1 ,20
3 20 18 3,20 48 1 ,15
4 15 20 3 50 1 ,12
5 12 24 2,30 54 1 , 6 ,40
6 10 25 2,24
8 7,30 27 2,13,20
9 6,40 30 2
10 6 32 1,52,30
12 5 36 1,40
15 4 40 1,30
如果你在现在的伊拉克的土地上发掘这样的泥板书,你能了解这是什麼
意思吗?四十多年前考古学家发现这事实上就是巴比仑人的「倒数表」。我
现在把以上的表改写:
你可以看出这就是把整数 n 的倒数1/n用六十进的分数来表示。比方说 27
对应 2,13,20意思就是:
你会注意到以上的表缺少了:7,11,13,14,17,19,21,23,26,28,31,33,34,35等等,
这是什麼原因呢?
原来是这样:巴比仑人只列下以六十进位制的分数表示式是有限长的那些整
数,而这些整数只能是 2a3b5c(这里a,b,c是大於或等於零的整数)的样子。
对於 7 来说,它的倒数如果是以六十进位数表示将得到循环分数,即 8,34,17,
8,34,17,....直到无穷。对於 11 也是如此,我们得到 5,27,16,21,49 然后重覆以上的样
式以至无穷。
为什麼要构造这样的「倒数表」呢?
我们在小学学计算:先学加,然后学减。先学乘,然后学除。如果现在要算
a ÷ b ,我们可以把这问题转化成为 a × (),这样只要知道 b 的倒数,我们就「
化除为乘」,计算有时是会快捷一些。
古代的巴比仑人也懂得这个道理,因此在实际生活上,如在灌溉、计算工资
、利息、税项、天文等问题上遇到除的问题,就尽可能将它转变为乘的问题来解
决,这时候「倒数表」就很有用了。
Top
祖冲之
法国巴黎的「发现宫」科学博物馆中友祖冲之的大名与他所发现
的圆周率值并列。他曾经算出月球绕地球一周为时27.21223日,与现代
公认的27.21222日,在那个时代能有那麼伟大的成就,实在让人佩服,
难怪西方科学家把月球上许多「火山口」中的一个命名为「祖冲之」。
而即使在社会主义*国家「老大哥」苏俄,在莫斯科国立大学礼堂
廊壁上,用彩色大理石镶嵌的世界各国著名的科学家肖像中,也有中国
的祖冲之和李时珍,祖氏有那麼杰出的表现,我们不能不对他稍有认识。
Top
阿基米德
阿基米德最有名的名言,就是:「给我一个立足点,我就可以
移动地球。」他一生专心研究科学上的体积和浮力问题,有一个有
趣的故事,就是当时候国王叫金匠打造一顶纯金的皇冠,国王因为
怀疑金匠加了杂物,就请阿基米德鉴定,阿基米德一直在想鉴定的
方法,就在他走进浴缸里洗澡的时候,看见满出去的水时,悟出体
积的原理,他高兴的跑出浴室,大叫:「我找到了!」一时忘了自
己是光著身体呢!另外,阿基米德还有几何方面的数学成就哩!
阿基米得是第一位讲科学的工程师,在他的研究中,使用欧几
理得的方法,先假设,再以严谨的逻辑推论得到结果,他不断地寻
求一般性的原则而用於特殊的工程上。他的作品始终融合数学和物
理,因此阿基米得成为物理学之父。
他应用杠杆原理於战争,保卫西拉斯鸠的事迹是家喻户晓的。
而他也以同一原理导出部分球体的体积、回转体的体积(椭球、回
转抛物面、回转双曲面),此外,他也讨论阿基米得螺线(例如:
苍蝇由等速旋转的唱盘中心向外走去所留下的轨迹),圆,球体、
圆柱的相关原理,其成就,在古时无人能望其项背。
阿基米得将欧几理得提出的趋近观念作了有效的运用,他提出
圆内接多边形和相似圆外切多边形,当边数足够大时,两多边形的
周长便一个由上,一个由下的趋近於圆周长。他先用六边形,以后
逐次加倍边数,到了九十六边形,求π的估计值介於3.14163和3.14286
之间。另外他算出球的表面积是其内接最大圆面积的四倍。而他最得
意的杰作是导出圆柱内切球体的体积是圆柱体积的三分之二倍。这定
理就刻在他的墓碑上,也成为他名垂千古的一大注记。
Top
毕达哥拉斯
毕达哥拉斯(Pythagoras)是希腊的哲学家和数学家。出生在希腊
撒摩亚(Samoa)地方的贵族家庭,年青时曾到过埃及和巴比仑那里学
习数学,游历了当时世界上二个文化水准极高的文明古国。毕达哥
拉斯后来就到意大利的南部传授数学及宣传他的哲学思想,后来和
他的信徒们组成了一个所谓「毕达哥拉斯学派」的*和宗教团体。
毕达哥拉斯是比同时代中一些开坛授课的学者进步一点;因为
他容许妇女(当然是贵放妇女而不是奴隶女婢)来听课。他认为妇
女也是和男人一样在求知的权利上平等,因此他的学派中就有十多
名女学者。这是其他学派所无的现象。
传说他是一个非常优秀的教师,他认为每一个都该懂些几何。
有一次他看到一个勤勉的穷人,他想教他学习几何,因此对此人
建议:如果这人能学懂一个定理,那麼他就给他一块钱币。这个人
看在钱份上就和他学几何了,可是过了一个时期,这学生对几何却
产生了非常大的兴趣,反而要求毕达哥拉斯教快一些,并且建议:
如果老师多教一个定理,他就给一个钱币。不需要多少时间,毕达
哥拉斯把他以前给那学生的钱全部收回了。
毕达哥拉斯是死在意大利科多拿城里,在一场城市*中,
他被人暗杀掉。他的坟墓现仍在意大利的这个古山城中,这坟墓就
像中国的馒头式坟。二千多年过去了,这坟还保留下来,可见人们
对这学者的重视。
毕氏建立毕达歌拉斯兄弟会,崇拜整数、分数为偶像,他们认
为透过对数的了解,可以揭示宇宙神秘,使他们更接近神,事实是
一个宗教性社团组织。入会时需宣誓不得将数学发现公诸於世,甚
至在毕氏死后,有成员因公开正12面体可由12个正五边形构成的发
现而*浸水致死。他们集中注意於研究自然数和有理数,特别是
完美数,它是本身正因数(除了本身之外)之和,例如:6=1+2+3、
28=1+2+4+7+14。他们认为上帝因为6是完美的,因此选择以6天创造
万物,且月亮绕行地球一周约28天。
毕氏建立毕达歌拉斯兄弟会后不久,撰造了「哲学家(philosopher)」
一词,在一次出席奥林匹亚竞赛时,弗利尤司的里昂王子问他会如何
描述自己,他回道:「我是一位哲学家。」他解释说:「有些人因
爱好财富而被左右,令一些人因热中於权力和支配而盲从,但是最
优秀的人则献身於发现生活本身的意义和目的。他设法揭示自然的
奥秘,热爱知识,这种人就是哲学家。」
「在一个直角三角形,斜边的平方是两股平方和。」这个定理
中国人(周朝的商高)和巴比伦人早在毕氏提出前一千年就在使用,
但一般人仍将定理归属於毕达歌拉斯,是因为他证明了定理的普遍性。
毕氏认为寻找证明就是寻找认识,而这种认识比任何训练所累积的经
验都不容置疑,数学逻辑是真理的仲裁者。
毕氏很少公开露面,他虽然向学生教授数学和哲学,但绝不允
许学生将之是外传,也因为兄弟会隐瞒数学发现,渐渐引起居民的
畏惧、妄想和猜忌。后来因学派介入了*事件,与学校所在地科落顿
行政当局发生冲突,终於诱使居民毁了这学派,80岁时毕氏在一次夜
间*乱中被杀,而避居国外的信徒,继续传播他们的数学真理。
对毕达歌拉斯而言,数学之美在於有理数能解释一切自然现象。
这种起指导作用的哲学观使毕氏对无理数的存在视而不见,甚至
导致他一个学生被处死。这位学生名叫希帕索斯,出於无聊,他
试图找出根号2的等价分数,最终他认识到根本不存在这个分数,
也就是说根号2是无理数,希帕索斯对这发现,喜出望外,但是
他的老师毕氏却不悦。因为毕氏已经用有理数解释了天地万物,
无理数的存在会引起对他信念的怀疑。希帕索斯经洞察力获致的
成果一定经过了一段时间的讨论和深思熟虑,毕氏本应接受这新
数源。然而,毕氏始终不愿承认自己的错误,却又无法经由逻辑
推理推翻希帕索斯的论证。使他终身蒙羞的是,他竟然判决将
希帕索斯淹死。这是希腊数学的最大悲剧,只有在他死后无理数
才得以安全的被讨论著。后来,欧几里德以反证法证明根号2是
无理数。
热心网友 时间:2022-05-13 05:28
数学家高斯的故事
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:
一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…
费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。
这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。
二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。
当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。
高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。
1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,*圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。
1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。
1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。
1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」。
在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。
1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。
1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。
高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。
1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。
高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:「宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。
其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:
to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。
早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。
美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:
在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡梦中安详的去
数 学 之 神 —— 阿 基 米 德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7 <π<223/71 ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
祖 冲 之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
罗 庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国*常委会委员和政协第六届全国委员会副*。
华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
毕 达 哥 拉 斯
毕达哥拉斯(约公元前580年-500年),古希腊哲学家、数学家、天文学家。他在意大利南部的克罗托内建立了一个*、宗教、数学合一的秘密团体--毕达哥拉斯学派,他们很重视数学,企图用数学来解释一切,毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理)而著名,其实这一定理早已为巴比伦人和中国人所知,但最早的证明可归功于毕达哥拉斯学派。
该学派还发现,若是奇数,则 构成直角三角形的三边,其实我们所称的勾股数。该学派将自然数分为若干类:奇数、偶数、完全数(即等于它的包括1而不包括它本身的所有因数之和的数)亲和数、三角数(1、3、6、10……)、平方数(1、4、9、16……)、五角数(1、5、12、22……)等,又发现从1起连续奇数的和必为平方数。
他们还发现了五种正多面体,在天文学和音乐理论上还有不少贡献,他的思想和学说对希腊文化有巨大影响。
热心网友 时间:2022-05-13 07:19
高斯
印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。
数学奇才、计算机之父——冯·诺依曼
20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".
约翰·冯·诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对 孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古 希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会*.
1954年夏,冯·诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.
冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、鼻子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在 1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题.
1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的. 他对其子代数进行了开创性工作,并莫定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯·诺依曼还创立了博奕论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博奕论与经济行为》.论文中包含博奕论的纯粹数学形式的阐述以及对于实际博奕应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作.
冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术和数值分析的开拓性工作.
现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接见天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进.
冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力.
EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.EDVAC机还有两个非常重大的改进,即:(1)采用了二进制,不但数据采用二进制,指令也采用二进制;(2建立了存储程序,指令和数据便可一起放在存储器里,并作同样处理.简化了计算机的结构,大大提高了计算机的速度. 1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯·诺依曼机",其中心就是有存储程序
原则--指令和数据一起存储.这个概念被誉为'计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯·诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯·诺依曼机"的设想. 冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献. 冯·诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖.
冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯·诺依曼全集》中,1961年出版.
数学奇才——伽罗华 页首
1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从*伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年*。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。
青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月*”中,作为高等师范学校新生,伽罗华率领群众走上街头,*国王的*统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。
伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。
“数学之神”——阿基米德 页首
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
数学家的故事——祖冲之 页首
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来*近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
数学家的故事——苏步青 页首
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出
热心网友 时间:2022-05-13 09:27
20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年*。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来*近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。