您的当前位置:首页正文

最新北师大版八年级数学上册《实数》1教学设计(精品教案)

2022-06-15 来源:知库网
第二章 实数

6.实数

一、依据新课标制定教学重点:

1.了解实数意义,能对实数进行分类;

2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;

3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

依据新课标制定教学难点:利用数轴上的点表示无理数。 二、教学任务分析

1. 教学目标:

(1).了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.

(2).了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.

(3).在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。

(4).在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。

(5).了解数系扩展对人类认识发展的必要性;

2. 知识目标:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理的表达能力。

3. 能力目标:通过对问题的发现和解决,培养学生的相互协作意识及数学表达能力,体验探索、交流与成功。 三、教学过程设计

本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结; 第一环节:复习引入新课

内容:问题:(1)什么是有理数?有理数怎样分类?

(2)什么是无理数?带根号的数都是无理数吗? 意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。

效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。 第二环节:实数概念和分类

内容1:把下列各数分别填入相应的集合内:

312,4,7,,

2052,2,3,

5,

38,

49,0,0.3737737773……

(相邻两个3之间7的个数逐次增加1)

知识整理:有理数和无理数统称为实数。

意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念。

效果:学生动手填写,并进行小组交流讨论,对带根号的数是否是无理数有了进一步认识。

内容2:1.你能把上面各数分别填入下面相应的集合内吗?

2.0属于正数吗?0属于负数吗? 知识整理:无理数和有理数一样,也有正负之分。

1.从符号考虑,实数可以分为正实数、0、负实数,即:

正实数实数0负实数

… 正数集合

… 负数集合

… 有理数集合

… 无理数集合

2.另外从实数的概念也可以进行如下分类:

有理数实数无理数

意图:在实数概念形成的基础上对实数进行不同的分类。上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类。提醒学生分类可以有不同的方法,但要按同一标准不重不漏。

效果:让学生讨论回答,形成共识:实数也可以分为正实数、0、负实数,并体会到了分类中不能出现遗漏和重复的要求。 第三环节:实数的相关概念

内容1:1.在有理数中,数a的相反数是什么?绝对值是什么?当a不为0时,它的倒数是什么?

2.

2的相反数是什么?

35的倒数是什么?3,0,—π的

绝对值分别是什么?

意图:从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的。

效果:学生类比有理数中相关概念,体会到了实数范围内的相反数、倒数、绝对值的意义。

内容2:想一想:

1.3—π的绝对值是 。

2.想一想:a是一个实数,它的相反数是 ,它的绝

对值是 ,当a≠0时,它的倒数是 。

知识整理

(1)相反数:a与—a互为相反数;0的相反数仍是0; (2)倒数:当a≠0时,a

1与a互为倒数(0没有倒数);

(3)绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;

a|a|0a(a0)(a0)(a0)即:

意图:加深学生对相关概念的理解。

效果:学生在讨论交流中进一步掌握了实数的相反数、倒数、绝对值等知识。 第四环节:实数运算

内容:1.在有理数范围内,能进行哪些运算?(加、减、乘、除、乘方),用哪些运算律?

2.判断下列各式成立吗?

2552

351135355

43273247321132

意图:从复习入手,类比有理数中的相关运算及运算律,得到有理数的运算及运算律对实数仍然适用。

效果:学生类比有理数中相关运算,体会到了实数范围内的运算及运算律。

第五环节:探究——实数与数轴上点之间的对应关系 内容1:如图所示,认真观察,探讨下列问题:

议一议:

-2

-1

0

B

A 1

2

(1)如图,OA=OB,数轴上A点对应的数表示什么?它介于哪两个整数之间?

(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗? 知识整理

(1)每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的;

(2)在数轴上,右边的点表示的数总比左边的点表示的数大。 意图:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。

效果:经过学生的探讨,认识到了数轴上点A表示的数是

2,它

是一个无理数,这表明有理数不能将整个数轴填满。进而观察到点A在表示数1和2的点之间,因此“数轴上,右边的点表示的数总比左边的点表示的数大”在实数范围内仍然适用。 第六环节:课堂练习

内容:1.判断下列说法是否正确:

(1)无限小数都是无理数; (2)无理数都是无限小数; (3)带根号的数都是无理数。

2.求下列各数的相反数、倒数和绝对值: (1)

7; (2)

38; (3)49.

3.在数轴上作出5对应的点。

意图:通过以上练习,检测学生对实数相关知识的掌握情况。 效果:第1,2题学生能较好地完成,在解决第第3题时遇到了一定的困难,通过回顾2的作法,学生相互讨论、交流,确定了作长、宽分别为2和1的长方形,其对角线为即为点。

第七环节:归纳小结

内容:议一议,本节课我们学习了哪些知识? 意图:鼓励学生结合本节课的学习谈自己的收获。 效果:学生交流,互相补充,完成本节知识的梳理。

5,从而能在数轴上作出相应的

因篇幅问题不能全部显示,请点此查看更多更全内容