物理化学学报(WuliHuaxueXuebao)
ActaPhys.-Chim.Sin.2014,30(7),1341-1346
doi:10.3866/PKU.WHXB201405041
1341
www.whxb.pku.edu.cn
基于蒽/芘分子封端的芴-芳胺衍生物的可溶液加工的蓝光材料的合成
与光电性质
欧阳密
吴启超
余振伟
李洪飞
张
诚*
(浙江工业大学化工学院,杭州310014)
摘要:
合成了两类分别基于芘和蒽封端的芴-芳胺衍生物(FAn,FPy)的新型可溶液加工蓝色发光分子,两种材
料均溶于常规的有机溶剂,并且可以旋涂成膜.通过紫外-可见光谱和荧光光谱对其在溶液中和固态薄膜下的光学性能进行了表征,发现这两类分子在固态下发射峰分别位于449和465nm,属于蓝色发光材料.并通过循环伏安法表征了其电化学性能,计算得出FAn和FPy的最高占据分子轨道(HOMO)能级分别为-5.37和-5.36eV.结果表明N-己基二苯胺的引入有效阻止了分子在固态下的平面堆积,抑制了长波发射,并且提高了分子HOMO能级,改善了空穴注入能力.差示扫描量热法(DSC)和热重分析(TGA)测试表明这两类化合物均显示出良好的热稳定性,其中FAn的玻璃化转变温度和热分解温度分别达到了207和439°C.良好的性能使得这两类材料成为一种潜在的可溶液加工的蓝光材料.关键词:
溶液加工;蓝色荧光;空穴注入;芴;芘;蒽
O644
中图分类号:
SynthesisandPhotoelectricalPropertiesofTwoPotentialSolution-ProcessedBlueFluorescentEmittersBasedonFluorene-Arylamine
DerivativesEnd-CappedwithAnthracene/PyreneMolecules
OUYANGMi
WUQi-Chao
YUZhen-Wei
LIHong-Fei
ZHANGCheng*
(CollegeofChemicalEngineering,ZhejiangUniversityofTechnology,Hangzhou310014,P.R.China)
Abstract:Twonovelpotentialsolution-processedbluefluorescentemitterscomposedofacorefluorene-diphenylamineunitcappedwitheitheranthracene(FAn)orpyrene(FPy)weresynthesizedandcharacterized.Theywerebothsolubleincommonorganicsolventsandsolutionsgavesmoothfilmsafterspincoating.TheiropticalpropertiesinsolutionandinthefilmwereinvestigatedbyUV-visibleandphotoluminescence(PL)spectroscopy.ThePLemissionmaximumofFAnandFPyinthefilmstatewerefoundtobe449and465nm,respectively.Theelectrochemicalpropertiesoftheas-preparedsampleswerestudiedbycyclicvoltammetry.Theestimatedhighestoccupiedmolecularorbital(HOMO)energylevelswere-5.37and-5.36eVforFAnandFPy,respectively.Theseresultsindicatethattheintroductionofdiphenylamineeffectivelypreventsplanestackingofthemoleculesinthesolidstate,whichsuppressestheformationoflong-wavelengthaggregates,andthehighHOMOlevelsenhancethehole-injectionabilityofthecompounds.Theresultsofdifferentialscanningcalorimetry(DSC)andthermogravimetricanalysis(TGA)indicatethatthetwomaterialshaveexcellentthermalstabilitywiththeglasstransitiontemperatureofFAnreaching207°Candthethermaldecompositiontemperatureashighas439°C.Thegoodperformanceofthefluorescentemittersmakesthempromisingcandidatesassolution-processedblueorganiclight-emittingdiodes.
Received:January24,2014;Revised:May4,2014;PublishedonWeb:May4,2014.∗
Correspondingauthor.Email:czhang@zjut.edu.cn;Tel:+86-571-88320508.
TheprojectwassupportedbytheNationalNaturalScienceFoundationofChina(51203138,51273179),NationalKeyBasicResearchProgramofChina(973)(2011CBA00700),andInternationalS&TCooperationProgram,China(2012DFA51210).
国家自然科学基金(51203138,51273179)项目,国家重点基础研究发展规划项目(973)(2011CBA00700)和国家国际科技合作重点项目计划(2012DFA51210)资助
©EditorialofficeofActaPhysico-ChimicaSinica
1342
KeyWords:Solution-processing;
ActaPhys.-Chim.Sin.2014Bluefluorescent;
Hole-injection;
Fluorene;
Pyrene;Anthracene
Vol.30
1Introduction
ElectroluminescentmaterialshavemadesignificantprogresssincethepioneeringworkofTangandVanSlyke.1Althoughelectroluminescentdeviceshaverecentlybeendevelopedandcommercializedforapplicationindisplaysandsolidstatelight-ings,2-4thereremainseveralobstaclestobeovercome.Acrucialoneisthedevelopmentofsolutionprocessedbluefluorescentmaterialsforfullcolordisplayandlighting.5-7Sincesolutionprocessingaffordssimplepreparationandthepossibilityoflowcostlargeareadevices,8andtheperformanceofbluefluo-rescentemittersisstillunsatisfactorycomparedwithgreenandredfluorescentemitters.9-12
Duringtheresearchofefficientbluefluorescentemitters,tre-mendouseffortsfocusonseveralcompoundsandtheirderiva-tivessuchasfluorene,13,14di(styryl)arylene,15pyrene,16,17andan-thracene18,19derivatives.Amongthem,fluorenederivativespos-sessingexcellentphotoluminescenceandelectroluminescencepropertieshavebeenstudiedintensivelytodevelopefficientbluelightemittingdevices.Forexample,Kumaretal.20synthe-sizedandcharacterizedaseriesoffluorenederivativesasblueemitterssuitableforapplicationinlightemittingdevices,andprovedthatanthraceneandpyrenecontainingderivativesex-hibitedbluephotoluminescencewithhighquantumyieldandthermalstability.Unfortunately,allthesederivativesholdthehighestoccupiedmolecularorbital(HOMO)energylowerthan-5.5eV,withpoorhole-injectionability,resultinginonlydecentdeviceparameters.Infact,almostallfluorenederiva-tivesasbluefluorescentemitterspossessedlowerHOMOener-gylevelduetotheintrinsicallywideband-gapofblue-emit-ters.21
ToobtainsolutionprocessedbluefluorescentemitterwithhighHOMOenergylevel,twonovelfluorene-diphenylaminecoredderivativesend-cappedwithanthraceneandpyreneweredesignedandsynthesizedinthispaper.WeanticipatethatthenoncoplanardiphenylaminestructureinsertedbetweenthetwofluorenescouldeffectivelyrestraintheintermolecularclosepackinginthesolidstateandincreasetheHOMOenergylevelforbetterhole-injection.22Moreover,thediphenylamineunitmadealkylsubstitutionoftheN-positioneasily,whichensuresthesolubilityincommonsolventsforsolutionprocessedofdevic-es.23Also,thepolyaromaticanthraceneandpyrenewereat-tachedtothecoretoimprovephotoluminescenceperformanceofquantumyieldandthermalstability.Inconsequence,thephotophysicalandelectrochemicalpropertiesweretunedtode-velopgoodsolutionprocessedblueelectroluminescenceperfor-mance.
2Experimental
2.1Generalinformation
Commerciallyavailablestartingchemicals,10-phenyl-9-an-
thraceneboronicacid(98%)and1-pyrenylboronicacid(95%)werepurchasedfromAladdinandusedasreceivedwithoutfur-therpurification.Thecatalyst,triflicacid(99%)andtetrakis(triphenylphosphine)palladium(99%)werepurchasedfromEn-ergyChemical.Toluene,tetrahydrofuran(THF),and1,4-diox-aneweredistilledfromsodiumunderargon.1Hand13Cnuclearmagneticresonance(NMR)spectrawererecordedonaAvanceIII500MHzspectrometer(Bruker,Switzerland)at500and125MHz,respectively,usingtetramethylsilane(TMS)astheinternalstandard.AutoflexMALDI-TOF-MSspectrometer(Bruker,Switzerland)wasusedtoobtainhigh-resolutionmassspectrometric.ElementalanalyseswereperformedonaTher-mo-FinniganFlashEA-1112(CE,Italy)instrument.UV-1800spectrophotoscopy(HRMS)(Shimadzu,Japan)wasusedtomeasuretheUV-Visspectra.FluorescencespectrawerecarriedoutusingaFluorolog-3modularspectrofluorometer(HORIBAJobinYvon,Japan).ThermalanalysiswascharacterizedbyaDiamondTG/DTA6300(PerkinElmer,USA)ataheatingrateof10°C∙min-1andanitrogenflowrateof80mL∙min-1.Field-emissionscanningelectronmicroscopy(FESEM)measure-mentsweretakenbyusingaHitachiS-4800scanningelectronmicroscopy(Hitachi,Japan).ElectrochemicalmeasurementswerecarriedoutusingCHI660Celectrochemicalanalyzer.PowderX-raydiffraction(XRD)measurementswereconduct-edonX′PertPROdiffractometer(PANalytical,Netherlands).2.2Synthesis
A0,A1weresynthesizedaccordingtothereportedproce-dure.24,25Describedbelowarethesynthesisandpurificationpro-ceduresforA2,P3,andthefinalproducts.
2.2.14-(2-bromo-9-(p-tolyl)-9H-fluoren-9-yl)-N-(4-(2-bromo-9-(p-tolyl)-9H-fluoren-9-yl)phenyl)-N-hexylaniline(A2)
Asolutionoftriflicacid(1mL)in1,4-dioxane(50mL)wasaddedtoamixtureof2-bromo-9-(p-tolyl)-9H-fluoren-9-ol(A0)(1.5g,4.2mmol),N-hexyl-N-phenylaniline(A1)(0.5g,2mmol).Themixturewasrefluxedfor24hunderthenitrogen.Afterthesolidswerefilteredoff,theproductwasextractedwithdichloromethaneanddriedwithanhydrousMgSO4.Thesolventwasremovedbyrotaryevaporation,andtheresiduewaspurifiedbycolumnchromatographyusingethylacetate/pe-troleumether(1:100)(V/V)aseluenttoobtainthewhitesolid(1.51g,82.4%).1HNMR(500MHz,CDCl3,δ):7.73(t,J=9.6Hz,2H),7.61(dd,J=8.0,3.9Hz,2H),7.53(t,J=3.8Hz,2H),7.47(dd,J=8.1,1.7Hz,2H),7.36(m,4H),7.05(m,14H),6.78(m,4H),3.59(dd,J=15.0,7.1Hz,2H),2.31(s,6H),1.27(m,8H),0.86(t,J=8.3Hz,3H).13CNMR(125MHz,CDCl3,δ):153.76,151.52,146.41,142.32,139.11,138.91,137.50,136.39,130.51,129.33,129.01,128.87,128.04,127.94,127.45,126.15,121.40,121.27,120.37,120.11,64.71,58.47,52.37,31.54,27.43,26.65,22.63,20.92,18.43,13.97.Element
No.7
OUYANGMietal.:SynthesisandPhotoelectricalPropertiesofTwoSolution-ProcessedBlueFluorescentEmitters
1343
anal.calcd.forC58H49Br2N(%):C,75.73;H,5.37;Br,17.37;N,1.53.Found(%):C,75.75;H,5.35;Br,17.36;N,1.54.2.2.22-(pyren-1-yl)-9-(p-tolyl)-9H-fluoren-9-ol(P3)
2-Bromo-9-(p-tolyl)-9H-fluoren-9-ol(A0)(0.87g,2.27mmol),1-pyrenylboronicacid(0.92g,3.71mmol),Pd(Pph3)4(0.05g,0.05mmol),aqueousK2CO3(2.0mol∙L-1,3mL),tetra-hydrofuran(30mL),andtoluene(50mL)weremixedinaflask.Themixturewasdegassedandthereactionwasthenheatedat90°Cwhilestirringunderthenitrogen.After48h,thesolventwasevaporatedundervacuumandtheproductwasextractedwithdichloromethaneanddriedwithMgSO4.Thesolventwasremovedbyrotaryevaporation,andtheresiduewaspurifiedbycolumnchromatographyusingethylacetate/pe-troleumether(1:50)aseluenttoobtainthewhitesolid(0.91g,78.3%).1HNMR(500MHz,CDCl3,δ):8.24-8.15(m,4H),8.10(s,2H),8.01(m,J=17.2Hz,3H),7.86(d,J=7.7Hz,1H),7.79(d,J=7.4Hz,1H),7.69-7.64(m,2H),7.47-7.41(m,2H),7.39(d,J=8.2Hz,2H),7.33(td,J=7.5,0.9Hz,1H),7.11(d,J=8.1Hz,2H),2.58(s,1H),2.32(s,3H).13CNMR(125MHz,CDCl3,δ):151.01,150.86,141.51,140.23,139.46,138.72,137.47,137.04,131.68,131.55,131.02,130.71,129.28,129.07,128.62,128.49,127.66,127.61,127.52,127.47,127.06,126.08,125.47,125.21,125.06,124.92,124.90,124.69,120.31,120.02,83.81,26.99,25.36,21.14.EI-MS(m/z):472.2[M+].Elementanal.calcd.forC36H24O(%):C,91.50;H,5.12;O,3.38.Found(%):C,91.46;H,5.14;O,3.40.2.2.3N-hexyl-4-(2-(10-phenylanthracen-9-yl)-9-(p-tolyl)-9H-fluoren-9-yl)-N-(4-(2-(10-phenylanthracen-9-yl)-9-(p-tolyl)-9H-fluoren-9-yl)phenyl)aniline(FAn)FollowingthesyntheticprocedureofP3describedabove,weobtainedFAnaswhitesolid(0.95g,75.1%).1HNMR(500MHz,CDCl3,δ):7.98(dd,J=7.7,1.8Hz,2H),7.87(t,J=8.8Hz,2H),7.87(m,2H),7.74-7.65(m,4H),7.62(m,J=13.4Hz,4H),7.59-7.50(m,8H),7.44(m,J=21.5Hz,8H),7.36-7.28(m,6H),7.19(m,J=14.2Hz,6H),7.14-7.07(m,6H),7.02(d,J=8.2Hz,4H),6.80(d,J=8.7Hz,4H),3.57(t,2H),2.29(s,6H),1.58(s,2H),1.24(dd,J=15.9,12.4Hz,6H),0.82(t,3H).13CNMR(125MHz,CDCl3,δ):152.19,154.94,146.24,142.77,139.88,139.43,138.03,137.26,136.07,131.29,130.64,129.79,129.63,128.95,128.91,128.87,128.40,128.06,127.77,127.44,127.01,126.95,126.32,124.94,120.37,120.23,119.93,64.76,31.55,27.34,26.66,22.63,20.91,13.98.MALDI-TOFMS(m/z):1266.6[M+].Ele-mentanal.calcd.forC98H75N(%):C,92.93;H,5.97;N,1.10.Found(%):C,92.97;H,5.92;O,1.11.
2.2.4N-hexyl-4-(2-(pyren-1-yl)-9-(p-tolyl)-9H-fluoren-9-yl)-N-(4-(2-(pyren-1-yl)-9-(p-tolyl)-9H-fluoren-9-yl)phenyl)aniline(FPy)
FollowingthesyntheticprocedureofA2describedabove,weobtainedFPyaswhitesolid(0.68g,83.5%).1HNMR(500MHz,CDCl3,δ):8.18-8.12(m,J=11.5Hz,6H),8.06(dd,J=7.7,6.0Hz,6H),7.97(d,J=7.8Hz,4H),7.93-7.87(m,4H),7.84(d,J=7.5Hz,2H),7.70(s,2H),7.65-7.61(m,J=7.6Hz,
2H),7.45(dd,J=7.5,3.9Hz,2H),7.42-7.37(m,2H),7.30(dd,J=8.0,3.8Hz,2H),7.20(dd,J=8.2,3.2Hz,4H),7.16(dd,J=8.4,4.8Hz,4H),7.05(t,J=7.0Hz,4H),6.92-6.79(m,4H),3.59(s,2H),2.28(s,6H),1.56(s,2H),1.23(s,6H),0.80(t,J=5.9Hz,3H).13CNMR(125MHz,CDCl3,δ):139.79,139.18,130.48,129.83,128.99,128.90,128.58,128.08,127.71,127.32,126.29,125.93,125.29,124.99,124.70,124.58,120.29,64.76,26.91,26.68,22.62,20.93,13.95.MALDI-TOFMS(m/z):1161.5[M+].Elementanal.calcd.forC90H67N(%):C,92.99;H,5.81;N,1.20.Found(%):C,92.95;H,5.83;N,1.22.
3Resultsanddiscussion
3.1Syntheticprocedureandcharacterization
Scheme1illustratesthesyntheticproceduresforthecom-pounds.2-bromo-9-(p-tolyl)-9H-fluoren-9-ol(A0)andN-hex-yl-N-phenylaniline(A1)werepreparedaccordingtoliterature25procedures.Acid-promotedFriedel-CraftstypesubstitutionofA0withA1afforded4-(2-bromo-9-(p-tolyl)-9H-fluoren-9-yl)-N-(4-(2-bromo-9-(p-tolyl)-9H-fluoren-9-yl)phenyl)-N-hexylan-iline(A2)inhighyield.ThentheSuzukicouplingreactionofA2and9-phenylanthracen-10-yl-10-boronicacidyieldedFAnin75.1%yield.A0and1-pyrenylboronicacidyielded2-(pyren-1-yl)-9-(p-tolyl)-9H-fluoren-9-ol(P3).ThentheFPywassyn-thesizedviatheFriedal-CraftsreactionofA1andP3in83.5%yield.1Hand13CNMR,MS,andelementalanalyseswereem-ployedtoconfirmthechemicalstructuresofthefinalcom-pounds.
3.2Thermalproperties
Thethermalpropertiesofthematerialswereevaluatedbythermalgravimetricanalysisanddifferentialscanningcalorim-etry.AsshowninFig.1,theglasstransitiontemperatureofFAnwasupto207°C,andthethermaldecompositiontemperatures(Td,correspondingto5%massloss)ofFAnandFPywereashighas439and366°C,respectively,whichcanbeascribedtotheeffectofpolyaromaticanthraceneandpyrene.Theresultsindicatedthattheexistenceoftherigidpolyaromaticend-cap-perseffectivelyrestrainedtheintermolecularinteractionandin-creasedtheTdvaluesofthecompounds.
TheXRDandSEMweremeasuredtofurtherconfirmthehighmorphologicalstabilityofFAnandFPy.Thefilmwaspre-paredviaspincoatingintoluenesolutionataspeedrateof1600r∙min-1for60s,andthetypicalthicknesswasabout60nm.AweakandbroadpeakwasobservedinthethinfilmofFAnandFPy(Fig.2).Moreimportantly,therewasnoobviouschangeontheFAnandFPyfilmsafterannealedat100°Cfor10hunderairatmosphere,exhibitedthattheintroductionoffluorene-arylaminegroupcouldrestrainthecrystallizationofanthraceneorpyrene.AsseenfromFig.3,noagglomerationoc-curredafterannealforbothFAnandFPy,theresultswereinagreementwiththeXRDcurvesabove.TheresultsofXRDandSEMrevealedthattheFAnandFPypossessedexcellentmorphologicalstabilityandthermalstability.
1344
ActaPhys.-Chim.Sin.2014
Vol.30
Scheme1Syntheticroutestothecompounds
reagentsandconditions:(i)triflicacid,1,4-dioxane,80°C,24h;(ii)Pd(Pph3)4,K2CO3(aq),tetrahydrofuran/toluene,90°C,48h
3.3Photophysicalproperties
Fig.4andFig.5representtheabsorptionandPLspectraofFAnandFPyindilutesolutionandfilmstate.AsseenfromFig.4,TheabsorptionspectrumofFAninchloroform(10-5mol∙L-1)displaysanabsorptionbandat314nm.Additionally,char-acteristicvibronicpatternsofanthracenecouldalsobefoundintheregionof357-398nm.TheabsorptionofFAnsolidfilmexhibitedslightredshiftof1-3nmcomparedwiththatindi-lutesolution.TheFAnemissionmaximumoccursat431nminchloroformand449nminsolidfilm.Theminorredshiftsbothinabsorptionandemissionindicatesthattheπ-πinteractionbetweenmoleculesinfilmstateisrelativelyweak,asaresultoftwistingmolecularstructurecausedbytheintroductionof
non-planardiphenylamine.TheabsorptionandPLspectraofFPyweredramaticallydifferentfromthoseofFAn.Theabsorp-tionpeakofFPyinsolidfilmissimilartothoseinsolutionandexhibitsslightlyred-shiftedof3nm.Uponexcitation,thesolidfilmshowsanemissionmaximumat465nm,whilethesolu-tiondisplaystwoemissionpeaksof425and489nm.Thephe-nomenonwasprobablycausedbyintermolecularinteractioninsolidstate.Bothoftheenergygaps(Eg)ofFAnandFPywereestimatedfromonsetabsorption(Eg=1240/λonset)tobe2.79and2.80eV,respectively.
3.4Electrochemicalproperties
TheelectrochemicalpropertiesofFAnandFpywerecharac-terizedinchloroforminathree-electrodeelectrochemicalcell
Fig.1ThermogravimetricanalysesofFAnandFPyanddifferentialscanningcalorimetryofFAn(inset)underanitrogen
atmospherewithaheatingrateof10°C∙min-1
Fig.2
PowderX-raydiffractionpatternsofFAn,FPy,
heatedFAn,andheatedFPy
No.7
OUYANGMietal.:SynthesisandPhotoelectricalPropertiesofTwoSolution-ProcessedBlueFluorescentEmitters
1345
Fig.3SEMimagesofFAn(a,c)andFPy(b,d)
(a,b)beforeanneal;(c,d)afterannealat100°Cfor10hunderairatmosphere
Fig.4Absorptionandphotoluminescencespectraof
FAninsolutionandinfilm
Fig.5Absorptionandphotoluminescencespectraof
FPyinsolutionandinfilm
withtetrabutylammoniumperchlorate(0.1mol∙L-1)asasup-portingelectrolyte.TheelectrochemicalpropertiesareshowninFig.6.TworeversibleanodicredoxcouplesforFAnandFPywereobtained.Theanodescansdemonstratedsimilarvaluesofonsetoxidationpotential(EOX)forbothemitters(0.99VforFAnand0.98VforFPy).Toassessthecarrierinjectingproper-ties,theestimatedHOMOenergylevelswereashighas-5.37and-5.36eVforFAnandFPy,respectively(EHOMO=-(EOX+4.38eV)).Theresultindicatedthattheintroductionofdiphe-
Fig.6CyclicvoltammogramsofcompoundsFAnandFPy
nylamineattheC2positionwasbeneficialtodecreasethehole-injectionbarriers.SuchahighHOMOenergylevelgreatlyre-ducedtheenergybarrierforholeinjectionfromindiumtinox-ide(ITO)(workfunction=-4.8eV)totheemissivefluorenede-rivatives.Asaresult,FAnandFPywereallowedtobeusedashole-injectionmaterials.TheLUMOenergylevelsforFAnandFPywerecalculatedtobe-2.58and-2.26eV,respectively.
4Conclusions
Insummary,twonovelbluefluorescentemitterscontainingfluorene-diphenylamineunitasthecoreandpolyaromatican-thraceneandpyreneastheperipheriesweresynthesizedbySuzukicouplingandFriedel-Craftsreactions.Thepresenceofnon-planardiphenylaminerestrainedtheforminglong-wave-lengthaggregateseffectivelyandenhancedthehole-injectionabilityofthecompounds.Moreover,theintroductionofhexylimprovedsolubilityincommonsolventsforthepurposeofso-lutionprocessedofdevices.Also,thetwocompoundsexhibit-edgoodthermalstability.ThestudiesontheintroductionofN-hexyl-N-diphenylamineprovideanapproachforthedesignofbluematerialswitheasilyhole-injectionandsolutionprocess-ingproperties.Furtherstudiestousethesematerialsasemit-tersinsolutionprocessedelectrofluorescentdevicesarecur-rentlybeingpursued.References
(1)Tang,C.W.;VanSlyke,S.A.Appl.Phys.Lett.1987,51(12),
913.doi:10.1063/1.98799
(2)Uoyama,H.;Goushi,K.;Shizu,K.;Nomura,H.;Adachi,C.Nature2012,492(7428),234.doi:10.1038/nature11687(3)Kido,J.;Kimura,M.;Nagai,K.Science1995,267(5202),1332.doi:10.1126/science.267.5202.1332
(4)
Muller,C.D.;Falcou,A.;Reckefuss,N.;Rojahn,M.;Wiederhirn,V.;Rudati,P.;Frohne,H.;Nuyken,O.;Becker,H.;Meerholz,K.Nature2003,421(6925),829.doi:10.1038/nature01390
(5)Liu,C.;Li,Y.H.;Li,Y.F.;Yang,C.L.;Wu,H.B.;Qin,J.G.;Cao,Y.Chem.Mat.2013,25(16),3320.doi:10.1021/cm401640v
1346
ActaPhys.-Chim.Sin.2014
Vol.30
(6)Trattnig,R.;Pevzner,L.;Jager,M.;Schlesinger,R.;Nardi,M.
V.;Ligorio,G.;Christodoulou,C.;Koch,N.;Baumgarten,M.;Mullen,K.;List,E.J.W.Adv.Funct.Mater.2013,23(39),4897.doi:10.1002/adfm.v23.39
(7)Wang,C.F.;Hung,W.Y.;Cheng,M.H.;Hwang,J.S.;Leung,
M.K.;Wong,K.T.Org.Electron.2013,14(8),1958.doi:10.1016/j.orgel.2013.04.047(8)Zuniga,C.A.;Barlow,S.;Marder,S.R.Chem.Mat.2011,23(3),658.doi:10.1021/cm102401k
(9)Okumoto,K.;Kanno,H.;Hamaa,Y.;Takahashi,H.;Shibata,K.Appl.Phys.Lett.2006,89(6),063504.doi:10.1063/1.2266452(10)Zhu,M.R.;Yang,C.L.Chem.Soc.Rev.2013,42(12),4963.doi:10.1039/c3cs35440g
(11)Chen,C.T.Chem.Mat.2004,16(23),4389.doi:10.1021/cm049679m
(12)
Xiao,L.X.;Hu,S.Y.;Kong,S.;Chen,Z.J.;Qu,B.;Gong,Q.H.ActaPhys.-Chim.Sin.2011,27(4),977.[肖立新,胡双元,孔胜,陈志坚,曲
波,龚旗煌.物理化学学报,2011,27(4),
977.]doi:10.3866/PKU.WHXB20110325
(13)
Zhang,L.;Lin,Z.Q.;Gu,J.F.;Yin,C.R.;Hou,X.Y.;Liu,F.;Liu,Y.Y.;Xie,L.H.;Chen,S.F.;Huang,W.ActaPhys.-Chim.Sin.2010,26(7),1934.[张龙,林宗琼,顾菊芬,殷成蓉,侯晓雅,刘烽,刘玉玉,解令海,陈淑芬,黄维.物理化学学
报,2012,26(7),1934.]doi:10.3866/PKU.WHXB20100739(14)
Chu,Z.Z.;Wang,D.;Zhang,C.;Zou,D.C.ActaPhys.-Chim.Sin.2012,28(8),2000.[初增泽,王丹,张超,邹德春.
物理化学学报,2012,28(8),2000.]doi:10.3866/PKU.
WHXB201206071
(15)Wu,K.C.;Ku,P.J.;Lin,C.S.;Shih,H.T.;Wu,F.I.;Huang,
M.J.;Lin,J.J.;Chen,I.C.;Cheng,C.H.Adv.Funct.Mater.2008,18(1),67.
(16)
Chan,K.L.;Lim,J.P.F.;Yang,X.H.;Dodabalapur,A.;Jabbour,G.E.;Sellinger,A.Chem.Commun.2012,48(42),5106.doi:10.1039/c2cc30995e
(17)Hu,J.Y.;Era,M.;Elsegood,M.R.J.;Yamato,T.Eur.J.Org.Chem.2010,2010(1),72.doi:10.1002/ejoc.200900806(18)Kim,R.;Lee,S.;Kim,K.H.;Lee,Y.J.;Kwon,S.K.;Kim,J.J.;Kim,Y.H.Chem.Commun.2013,49(41),4664.doi:10.1039/c3cc41441h
(19)Park,H.;Lee,J.;Kang,I.;Chu,H.Y.;Lee,J.I.;Kwon,S.K.;Kim,Y.H.J.Mater.Chem.2012,22(6),2695.doi:10.1039/c2jm16056k
(20)Kumar,D.;Thomas,K.R.J.;Chen,Y.L.;Jou,Y.C.;Jou,J.H.Tetrahedron2013,69(12),2594.doi:10.1016/j.tet.2013.01.046(21)Yao,L.;Sun,S.H.;Xue,S.F.;Zhang,S.T.;Wu,X.Y.;Zhang,
H.H.;Pan,Y.Y.;Gu,C.;Li,F.H.;Ma,Y.G.J.Phys.Chem.C2013,117(27),14189.doi:10.1021/jp403463k
(22)
Zhang,Y.J.;Jin,Y.X.;Bai,R.;Yu,Z.W.;Hu,B.;Ouyang,M.;Sun,J.W.;Yu,C.H.;Liu,J.L.;Zhang,C.J.Photochem.Photobiol.A-Chem.2012,227(1),59.doi:10.1016/j.jphotochem.2011.11.003
(23)Taguchi,Y.;Uyama,H.;Kobayashi,S.J.Polym.Sci.Pol.
Chem.1996,34(4),561.
(24)Hong,Y.;Liao,J.Y.;Cao,D.;Zang,X.;Kuang,D.B.;Wang,L.;Meier,H.;Su,C.Y.J.Org.Chem.2011,76(19),8015.doi:10.1021/jo201057b
(25)Vougioukalakis,G.C.;Roubelakis,M.M.;Orfanopoulos,M.
J.Org.Chem.2010,75(12),4124.doi:10.1021/jo100277v
因篇幅问题不能全部显示,请点此查看更多更全内容