您的当前位置:首页正文

基于蒽和芘分子封端的芴-芳胺衍生物的可溶液加工的蓝光材料的合成与光电性质

2022-06-15 来源:知库网
July[Article]

物理化学学报(WuliHuaxueXuebao)

ActaPhys.-Chim.Sin.2014,30(7),1341-1346

doi:10.3866/PKU.WHXB201405041

1341

www.whxb.pku.edu.cn

基于蒽/芘分子封端的芴-芳胺衍生物的可溶液加工的蓝光材料的合成

与光电性质

欧阳密

吴启超

余振伟

李洪飞

诚*

(浙江工业大学化工学院,杭州310014)

摘要:

合成了两类分别基于芘和蒽封端的芴-芳胺衍生物(FAn,FPy)的新型可溶液加工蓝色发光分子,两种材

料均溶于常规的有机溶剂,并且可以旋涂成膜.通过紫外-可见光谱和荧光光谱对其在溶液中和固态薄膜下的光学性能进行了表征,发现这两类分子在固态下发射峰分别位于449和465nm,属于蓝色发光材料.并通过循环伏安法表征了其电化学性能,计算得出FAn和FPy的最高占据分子轨道(HOMO)能级分别为-5.37和-5.36eV.结果表明N-己基二苯胺的引入有效阻止了分子在固态下的平面堆积,抑制了长波发射,并且提高了分子HOMO能级,改善了空穴注入能力.差示扫描量热法(DSC)和热重分析(TGA)测试表明这两类化合物均显示出良好的热稳定性,其中FAn的玻璃化转变温度和热分解温度分别达到了207和439°C.良好的性能使得这两类材料成为一种潜在的可溶液加工的蓝光材料.关键词:

溶液加工;蓝色荧光;空穴注入;芴;芘;蒽

O644

中图分类号:

SynthesisandPhotoelectricalPropertiesofTwoPotentialSolution-ProcessedBlueFluorescentEmittersBasedonFluorene-Arylamine

DerivativesEnd-CappedwithAnthracene/PyreneMolecules

OUYANGMi

WUQi-Chao

YUZhen-Wei

LIHong-Fei

ZHANGCheng*

(CollegeofChemicalEngineering,ZhejiangUniversityofTechnology,Hangzhou310014,P.R.China)

Abstract:Twonovelpotentialsolution-processedbluefluorescentemitterscomposedofacorefluorene-diphenylamineunitcappedwitheitheranthracene(FAn)orpyrene(FPy)weresynthesizedandcharacterized.Theywerebothsolubleincommonorganicsolventsandsolutionsgavesmoothfilmsafterspincoating.TheiropticalpropertiesinsolutionandinthefilmwereinvestigatedbyUV-visibleandphotoluminescence(PL)spectroscopy.ThePLemissionmaximumofFAnandFPyinthefilmstatewerefoundtobe449and465nm,respectively.Theelectrochemicalpropertiesoftheas-preparedsampleswerestudiedbycyclicvoltammetry.Theestimatedhighestoccupiedmolecularorbital(HOMO)energylevelswere-5.37and-5.36eVforFAnandFPy,respectively.Theseresultsindicatethattheintroductionofdiphenylamineeffectivelypreventsplanestackingofthemoleculesinthesolidstate,whichsuppressestheformationoflong-wavelengthaggregates,andthehighHOMOlevelsenhancethehole-injectionabilityofthecompounds.Theresultsofdifferentialscanningcalorimetry(DSC)andthermogravimetricanalysis(TGA)indicatethatthetwomaterialshaveexcellentthermalstabilitywiththeglasstransitiontemperatureofFAnreaching207°Candthethermaldecompositiontemperatureashighas439°C.Thegoodperformanceofthefluorescentemittersmakesthempromisingcandidatesassolution-processedblueorganiclight-emittingdiodes.

Received:January24,2014;Revised:May4,2014;PublishedonWeb:May4,2014.∗

Correspondingauthor.Email:czhang@zjut.edu.cn;Tel:+86-571-88320508.

TheprojectwassupportedbytheNationalNaturalScienceFoundationofChina(51203138,51273179),NationalKeyBasicResearchProgramofChina(973)(2011CBA00700),andInternationalS&TCooperationProgram,China(2012DFA51210).

国家自然科学基金(51203138,51273179)项目,国家重点基础研究发展规划项目(973)(2011CBA00700)和国家国际科技合作重点项目计划(2012DFA51210)资助

©EditorialofficeofActaPhysico-ChimicaSinica

1342

KeyWords:Solution-processing;

ActaPhys.-Chim.Sin.2014Bluefluorescent;

Hole-injection;

Fluorene;

Pyrene;Anthracene

Vol.30

1Introduction

ElectroluminescentmaterialshavemadesignificantprogresssincethepioneeringworkofTangandVanSlyke.1Althoughelectroluminescentdeviceshaverecentlybeendevelopedandcommercializedforapplicationindisplaysandsolidstatelight-ings,2-4thereremainseveralobstaclestobeovercome.Acrucialoneisthedevelopmentofsolutionprocessedbluefluorescentmaterialsforfullcolordisplayandlighting.5-7Sincesolutionprocessingaffordssimplepreparationandthepossibilityoflowcostlargeareadevices,8andtheperformanceofbluefluo-rescentemittersisstillunsatisfactorycomparedwithgreenandredfluorescentemitters.9-12

Duringtheresearchofefficientbluefluorescentemitters,tre-mendouseffortsfocusonseveralcompoundsandtheirderiva-tivessuchasfluorene,13,14di(styryl)arylene,15pyrene,16,17andan-thracene18,19derivatives.Amongthem,fluorenederivativespos-sessingexcellentphotoluminescenceandelectroluminescencepropertieshavebeenstudiedintensivelytodevelopefficientbluelightemittingdevices.Forexample,Kumaretal.20synthe-sizedandcharacterizedaseriesoffluorenederivativesasblueemitterssuitableforapplicationinlightemittingdevices,andprovedthatanthraceneandpyrenecontainingderivativesex-hibitedbluephotoluminescencewithhighquantumyieldandthermalstability.Unfortunately,allthesederivativesholdthehighestoccupiedmolecularorbital(HOMO)energylowerthan-5.5eV,withpoorhole-injectionability,resultinginonlydecentdeviceparameters.Infact,almostallfluorenederiva-tivesasbluefluorescentemitterspossessedlowerHOMOener-gylevelduetotheintrinsicallywideband-gapofblue-emit-ters.21

ToobtainsolutionprocessedbluefluorescentemitterwithhighHOMOenergylevel,twonovelfluorene-diphenylaminecoredderivativesend-cappedwithanthraceneandpyreneweredesignedandsynthesizedinthispaper.WeanticipatethatthenoncoplanardiphenylaminestructureinsertedbetweenthetwofluorenescouldeffectivelyrestraintheintermolecularclosepackinginthesolidstateandincreasetheHOMOenergylevelforbetterhole-injection.22Moreover,thediphenylamineunitmadealkylsubstitutionoftheN-positioneasily,whichensuresthesolubilityincommonsolventsforsolutionprocessedofdevic-es.23Also,thepolyaromaticanthraceneandpyrenewereat-tachedtothecoretoimprovephotoluminescenceperformanceofquantumyieldandthermalstability.Inconsequence,thephotophysicalandelectrochemicalpropertiesweretunedtode-velopgoodsolutionprocessedblueelectroluminescenceperfor-mance.

2Experimental

2.1Generalinformation

Commerciallyavailablestartingchemicals,10-phenyl-9-an-

thraceneboronicacid(98%)and1-pyrenylboronicacid(95%)werepurchasedfromAladdinandusedasreceivedwithoutfur-therpurification.Thecatalyst,triflicacid(99%)andtetrakis(triphenylphosphine)palladium(99%)werepurchasedfromEn-ergyChemical.Toluene,tetrahydrofuran(THF),and1,4-diox-aneweredistilledfromsodiumunderargon.1Hand13Cnuclearmagneticresonance(NMR)spectrawererecordedonaAvanceIII500MHzspectrometer(Bruker,Switzerland)at500and125MHz,respectively,usingtetramethylsilane(TMS)astheinternalstandard.AutoflexMALDI-TOF-MSspectrometer(Bruker,Switzerland)wasusedtoobtainhigh-resolutionmassspectrometric.ElementalanalyseswereperformedonaTher-mo-FinniganFlashEA-1112(CE,Italy)instrument.UV-1800spectrophotoscopy(HRMS)(Shimadzu,Japan)wasusedtomeasuretheUV-Visspectra.FluorescencespectrawerecarriedoutusingaFluorolog-3modularspectrofluorometer(HORIBAJobinYvon,Japan).ThermalanalysiswascharacterizedbyaDiamondTG/DTA6300(PerkinElmer,USA)ataheatingrateof10°C∙min-1andanitrogenflowrateof80mL∙min-1.Field-emissionscanningelectronmicroscopy(FESEM)measure-mentsweretakenbyusingaHitachiS-4800scanningelectronmicroscopy(Hitachi,Japan).ElectrochemicalmeasurementswerecarriedoutusingCHI660Celectrochemicalanalyzer.PowderX-raydiffraction(XRD)measurementswereconduct-edonX′PertPROdiffractometer(PANalytical,Netherlands).2.2Synthesis

A0,A1weresynthesizedaccordingtothereportedproce-dure.24,25Describedbelowarethesynthesisandpurificationpro-ceduresforA2,P3,andthefinalproducts.

2.2.14-(2-bromo-9-(p-tolyl)-9H-fluoren-9-yl)-N-(4-(2-bromo-9-(p-tolyl)-9H-fluoren-9-yl)phenyl)-N-hexylaniline(A2)

Asolutionoftriflicacid(1mL)in1,4-dioxane(50mL)wasaddedtoamixtureof2-bromo-9-(p-tolyl)-9H-fluoren-9-ol(A0)(1.5g,4.2mmol),N-hexyl-N-phenylaniline(A1)(0.5g,2mmol).Themixturewasrefluxedfor24hunderthenitrogen.Afterthesolidswerefilteredoff,theproductwasextractedwithdichloromethaneanddriedwithanhydrousMgSO4.Thesolventwasremovedbyrotaryevaporation,andtheresiduewaspurifiedbycolumnchromatographyusingethylacetate/pe-troleumether(1:100)(V/V)aseluenttoobtainthewhitesolid(1.51g,82.4%).1HNMR(500MHz,CDCl3,δ):7.73(t,J=9.6Hz,2H),7.61(dd,J=8.0,3.9Hz,2H),7.53(t,J=3.8Hz,2H),7.47(dd,J=8.1,1.7Hz,2H),7.36(m,4H),7.05(m,14H),6.78(m,4H),3.59(dd,J=15.0,7.1Hz,2H),2.31(s,6H),1.27(m,8H),0.86(t,J=8.3Hz,3H).13CNMR(125MHz,CDCl3,δ):153.76,151.52,146.41,142.32,139.11,138.91,137.50,136.39,130.51,129.33,129.01,128.87,128.04,127.94,127.45,126.15,121.40,121.27,120.37,120.11,64.71,58.47,52.37,31.54,27.43,26.65,22.63,20.92,18.43,13.97.Element

No.7

OUYANGMietal.:SynthesisandPhotoelectricalPropertiesofTwoSolution-ProcessedBlueFluorescentEmitters

1343

anal.calcd.forC58H49Br2N(%):C,75.73;H,5.37;Br,17.37;N,1.53.Found(%):C,75.75;H,5.35;Br,17.36;N,1.54.2.2.22-(pyren-1-yl)-9-(p-tolyl)-9H-fluoren-9-ol(P3)

2-Bromo-9-(p-tolyl)-9H-fluoren-9-ol(A0)(0.87g,2.27mmol),1-pyrenylboronicacid(0.92g,3.71mmol),Pd(Pph3)4(0.05g,0.05mmol),aqueousK2CO3(2.0mol∙L-1,3mL),tetra-hydrofuran(30mL),andtoluene(50mL)weremixedinaflask.Themixturewasdegassedandthereactionwasthenheatedat90°Cwhilestirringunderthenitrogen.After48h,thesolventwasevaporatedundervacuumandtheproductwasextractedwithdichloromethaneanddriedwithMgSO4.Thesolventwasremovedbyrotaryevaporation,andtheresiduewaspurifiedbycolumnchromatographyusingethylacetate/pe-troleumether(1:50)aseluenttoobtainthewhitesolid(0.91g,78.3%).1HNMR(500MHz,CDCl3,δ):8.24-8.15(m,4H),8.10(s,2H),8.01(m,J=17.2Hz,3H),7.86(d,J=7.7Hz,1H),7.79(d,J=7.4Hz,1H),7.69-7.64(m,2H),7.47-7.41(m,2H),7.39(d,J=8.2Hz,2H),7.33(td,J=7.5,0.9Hz,1H),7.11(d,J=8.1Hz,2H),2.58(s,1H),2.32(s,3H).13CNMR(125MHz,CDCl3,δ):151.01,150.86,141.51,140.23,139.46,138.72,137.47,137.04,131.68,131.55,131.02,130.71,129.28,129.07,128.62,128.49,127.66,127.61,127.52,127.47,127.06,126.08,125.47,125.21,125.06,124.92,124.90,124.69,120.31,120.02,83.81,26.99,25.36,21.14.EI-MS(m/z):472.2[M+].Elementanal.calcd.forC36H24O(%):C,91.50;H,5.12;O,3.38.Found(%):C,91.46;H,5.14;O,3.40.2.2.3N-hexyl-4-(2-(10-phenylanthracen-9-yl)-9-(p-tolyl)-9H-fluoren-9-yl)-N-(4-(2-(10-phenylanthracen-9-yl)-9-(p-tolyl)-9H-fluoren-9-yl)phenyl)aniline(FAn)FollowingthesyntheticprocedureofP3describedabove,weobtainedFAnaswhitesolid(0.95g,75.1%).1HNMR(500MHz,CDCl3,δ):7.98(dd,J=7.7,1.8Hz,2H),7.87(t,J=8.8Hz,2H),7.87(m,2H),7.74-7.65(m,4H),7.62(m,J=13.4Hz,4H),7.59-7.50(m,8H),7.44(m,J=21.5Hz,8H),7.36-7.28(m,6H),7.19(m,J=14.2Hz,6H),7.14-7.07(m,6H),7.02(d,J=8.2Hz,4H),6.80(d,J=8.7Hz,4H),3.57(t,2H),2.29(s,6H),1.58(s,2H),1.24(dd,J=15.9,12.4Hz,6H),0.82(t,3H).13CNMR(125MHz,CDCl3,δ):152.19,154.94,146.24,142.77,139.88,139.43,138.03,137.26,136.07,131.29,130.64,129.79,129.63,128.95,128.91,128.87,128.40,128.06,127.77,127.44,127.01,126.95,126.32,124.94,120.37,120.23,119.93,64.76,31.55,27.34,26.66,22.63,20.91,13.98.MALDI-TOFMS(m/z):1266.6[M+].Ele-mentanal.calcd.forC98H75N(%):C,92.93;H,5.97;N,1.10.Found(%):C,92.97;H,5.92;O,1.11.

2.2.4N-hexyl-4-(2-(pyren-1-yl)-9-(p-tolyl)-9H-fluoren-9-yl)-N-(4-(2-(pyren-1-yl)-9-(p-tolyl)-9H-fluoren-9-yl)phenyl)aniline(FPy)

FollowingthesyntheticprocedureofA2describedabove,weobtainedFPyaswhitesolid(0.68g,83.5%).1HNMR(500MHz,CDCl3,δ):8.18-8.12(m,J=11.5Hz,6H),8.06(dd,J=7.7,6.0Hz,6H),7.97(d,J=7.8Hz,4H),7.93-7.87(m,4H),7.84(d,J=7.5Hz,2H),7.70(s,2H),7.65-7.61(m,J=7.6Hz,

2H),7.45(dd,J=7.5,3.9Hz,2H),7.42-7.37(m,2H),7.30(dd,J=8.0,3.8Hz,2H),7.20(dd,J=8.2,3.2Hz,4H),7.16(dd,J=8.4,4.8Hz,4H),7.05(t,J=7.0Hz,4H),6.92-6.79(m,4H),3.59(s,2H),2.28(s,6H),1.56(s,2H),1.23(s,6H),0.80(t,J=5.9Hz,3H).13CNMR(125MHz,CDCl3,δ):139.79,139.18,130.48,129.83,128.99,128.90,128.58,128.08,127.71,127.32,126.29,125.93,125.29,124.99,124.70,124.58,120.29,64.76,26.91,26.68,22.62,20.93,13.95.MALDI-TOFMS(m/z):1161.5[M+].Elementanal.calcd.forC90H67N(%):C,92.99;H,5.81;N,1.20.Found(%):C,92.95;H,5.83;N,1.22.

3Resultsanddiscussion

3.1Syntheticprocedureandcharacterization

Scheme1illustratesthesyntheticproceduresforthecom-pounds.2-bromo-9-(p-tolyl)-9H-fluoren-9-ol(A0)andN-hex-yl-N-phenylaniline(A1)werepreparedaccordingtoliterature25procedures.Acid-promotedFriedel-CraftstypesubstitutionofA0withA1afforded4-(2-bromo-9-(p-tolyl)-9H-fluoren-9-yl)-N-(4-(2-bromo-9-(p-tolyl)-9H-fluoren-9-yl)phenyl)-N-hexylan-iline(A2)inhighyield.ThentheSuzukicouplingreactionofA2and9-phenylanthracen-10-yl-10-boronicacidyieldedFAnin75.1%yield.A0and1-pyrenylboronicacidyielded2-(pyren-1-yl)-9-(p-tolyl)-9H-fluoren-9-ol(P3).ThentheFPywassyn-thesizedviatheFriedal-CraftsreactionofA1andP3in83.5%yield.1Hand13CNMR,MS,andelementalanalyseswereem-ployedtoconfirmthechemicalstructuresofthefinalcom-pounds.

3.2Thermalproperties

Thethermalpropertiesofthematerialswereevaluatedbythermalgravimetricanalysisanddifferentialscanningcalorim-etry.AsshowninFig.1,theglasstransitiontemperatureofFAnwasupto207°C,andthethermaldecompositiontemperatures(Td,correspondingto5%massloss)ofFAnandFPywereashighas439and366°C,respectively,whichcanbeascribedtotheeffectofpolyaromaticanthraceneandpyrene.Theresultsindicatedthattheexistenceoftherigidpolyaromaticend-cap-perseffectivelyrestrainedtheintermolecularinteractionandin-creasedtheTdvaluesofthecompounds.

TheXRDandSEMweremeasuredtofurtherconfirmthehighmorphologicalstabilityofFAnandFPy.Thefilmwaspre-paredviaspincoatingintoluenesolutionataspeedrateof1600r∙min-1for60s,andthetypicalthicknesswasabout60nm.AweakandbroadpeakwasobservedinthethinfilmofFAnandFPy(Fig.2).Moreimportantly,therewasnoobviouschangeontheFAnandFPyfilmsafterannealedat100°Cfor10hunderairatmosphere,exhibitedthattheintroductionoffluorene-arylaminegroupcouldrestrainthecrystallizationofanthraceneorpyrene.AsseenfromFig.3,noagglomerationoc-curredafterannealforbothFAnandFPy,theresultswereinagreementwiththeXRDcurvesabove.TheresultsofXRDandSEMrevealedthattheFAnandFPypossessedexcellentmorphologicalstabilityandthermalstability.

1344

ActaPhys.-Chim.Sin.2014

Vol.30

Scheme1Syntheticroutestothecompounds

reagentsandconditions:(i)triflicacid,1,4-dioxane,80°C,24h;(ii)Pd(Pph3)4,K2CO3(aq),tetrahydrofuran/toluene,90°C,48h

3.3Photophysicalproperties

Fig.4andFig.5representtheabsorptionandPLspectraofFAnandFPyindilutesolutionandfilmstate.AsseenfromFig.4,TheabsorptionspectrumofFAninchloroform(10-5mol∙L-1)displaysanabsorptionbandat314nm.Additionally,char-acteristicvibronicpatternsofanthracenecouldalsobefoundintheregionof357-398nm.TheabsorptionofFAnsolidfilmexhibitedslightredshiftof1-3nmcomparedwiththatindi-lutesolution.TheFAnemissionmaximumoccursat431nminchloroformand449nminsolidfilm.Theminorredshiftsbothinabsorptionandemissionindicatesthattheπ-πinteractionbetweenmoleculesinfilmstateisrelativelyweak,asaresultoftwistingmolecularstructurecausedbytheintroductionof

non-planardiphenylamine.TheabsorptionandPLspectraofFPyweredramaticallydifferentfromthoseofFAn.Theabsorp-tionpeakofFPyinsolidfilmissimilartothoseinsolutionandexhibitsslightlyred-shiftedof3nm.Uponexcitation,thesolidfilmshowsanemissionmaximumat465nm,whilethesolu-tiondisplaystwoemissionpeaksof425and489nm.Thephe-nomenonwasprobablycausedbyintermolecularinteractioninsolidstate.Bothoftheenergygaps(Eg)ofFAnandFPywereestimatedfromonsetabsorption(Eg=1240/λonset)tobe2.79and2.80eV,respectively.

3.4Electrochemicalproperties

TheelectrochemicalpropertiesofFAnandFpywerecharac-terizedinchloroforminathree-electrodeelectrochemicalcell

Fig.1ThermogravimetricanalysesofFAnandFPyanddifferentialscanningcalorimetryofFAn(inset)underanitrogen

atmospherewithaheatingrateof10°C∙min-1

Fig.2

PowderX-raydiffractionpatternsofFAn,FPy,

heatedFAn,andheatedFPy

No.7

OUYANGMietal.:SynthesisandPhotoelectricalPropertiesofTwoSolution-ProcessedBlueFluorescentEmitters

1345

Fig.3SEMimagesofFAn(a,c)andFPy(b,d)

(a,b)beforeanneal;(c,d)afterannealat100°Cfor10hunderairatmosphere

Fig.4Absorptionandphotoluminescencespectraof

FAninsolutionandinfilm

Fig.5Absorptionandphotoluminescencespectraof

FPyinsolutionandinfilm

withtetrabutylammoniumperchlorate(0.1mol∙L-1)asasup-portingelectrolyte.TheelectrochemicalpropertiesareshowninFig.6.TworeversibleanodicredoxcouplesforFAnandFPywereobtained.Theanodescansdemonstratedsimilarvaluesofonsetoxidationpotential(EOX)forbothemitters(0.99VforFAnand0.98VforFPy).Toassessthecarrierinjectingproper-ties,theestimatedHOMOenergylevelswereashighas-5.37and-5.36eVforFAnandFPy,respectively(EHOMO=-(EOX+4.38eV)).Theresultindicatedthattheintroductionofdiphe-

Fig.6CyclicvoltammogramsofcompoundsFAnandFPy

nylamineattheC2positionwasbeneficialtodecreasethehole-injectionbarriers.SuchahighHOMOenergylevelgreatlyre-ducedtheenergybarrierforholeinjectionfromindiumtinox-ide(ITO)(workfunction=-4.8eV)totheemissivefluorenede-rivatives.Asaresult,FAnandFPywereallowedtobeusedashole-injectionmaterials.TheLUMOenergylevelsforFAnandFPywerecalculatedtobe-2.58and-2.26eV,respectively.

4Conclusions

Insummary,twonovelbluefluorescentemitterscontainingfluorene-diphenylamineunitasthecoreandpolyaromatican-thraceneandpyreneastheperipheriesweresynthesizedbySuzukicouplingandFriedel-Craftsreactions.Thepresenceofnon-planardiphenylaminerestrainedtheforminglong-wave-lengthaggregateseffectivelyandenhancedthehole-injectionabilityofthecompounds.Moreover,theintroductionofhexylimprovedsolubilityincommonsolventsforthepurposeofso-lutionprocessedofdevices.Also,thetwocompoundsexhibit-edgoodthermalstability.ThestudiesontheintroductionofN-hexyl-N-diphenylamineprovideanapproachforthedesignofbluematerialswitheasilyhole-injectionandsolutionprocess-ingproperties.Furtherstudiestousethesematerialsasemit-tersinsolutionprocessedelectrofluorescentdevicesarecur-rentlybeingpursued.References

(1)Tang,C.W.;VanSlyke,S.A.Appl.Phys.Lett.1987,51(12),

913.doi:10.1063/1.98799

(2)Uoyama,H.;Goushi,K.;Shizu,K.;Nomura,H.;Adachi,C.Nature2012,492(7428),234.doi:10.1038/nature11687(3)Kido,J.;Kimura,M.;Nagai,K.Science1995,267(5202),1332.doi:10.1126/science.267.5202.1332

(4)

Muller,C.D.;Falcou,A.;Reckefuss,N.;Rojahn,M.;Wiederhirn,V.;Rudati,P.;Frohne,H.;Nuyken,O.;Becker,H.;Meerholz,K.Nature2003,421(6925),829.doi:10.1038/nature01390

(5)Liu,C.;Li,Y.H.;Li,Y.F.;Yang,C.L.;Wu,H.B.;Qin,J.G.;Cao,Y.Chem.Mat.2013,25(16),3320.doi:10.1021/cm401640v

1346

ActaPhys.-Chim.Sin.2014

Vol.30

(6)Trattnig,R.;Pevzner,L.;Jager,M.;Schlesinger,R.;Nardi,M.

V.;Ligorio,G.;Christodoulou,C.;Koch,N.;Baumgarten,M.;Mullen,K.;List,E.J.W.Adv.Funct.Mater.2013,23(39),4897.doi:10.1002/adfm.v23.39

(7)Wang,C.F.;Hung,W.Y.;Cheng,M.H.;Hwang,J.S.;Leung,

M.K.;Wong,K.T.Org.Electron.2013,14(8),1958.doi:10.1016/j.orgel.2013.04.047(8)Zuniga,C.A.;Barlow,S.;Marder,S.R.Chem.Mat.2011,23(3),658.doi:10.1021/cm102401k

(9)Okumoto,K.;Kanno,H.;Hamaa,Y.;Takahashi,H.;Shibata,K.Appl.Phys.Lett.2006,89(6),063504.doi:10.1063/1.2266452(10)Zhu,M.R.;Yang,C.L.Chem.Soc.Rev.2013,42(12),4963.doi:10.1039/c3cs35440g

(11)Chen,C.T.Chem.Mat.2004,16(23),4389.doi:10.1021/cm049679m

(12)

Xiao,L.X.;Hu,S.Y.;Kong,S.;Chen,Z.J.;Qu,B.;Gong,Q.H.ActaPhys.-Chim.Sin.2011,27(4),977.[肖立新,胡双元,孔胜,陈志坚,曲

波,龚旗煌.物理化学学报,2011,27(4),

977.]doi:10.3866/PKU.WHXB20110325

(13)

Zhang,L.;Lin,Z.Q.;Gu,J.F.;Yin,C.R.;Hou,X.Y.;Liu,F.;Liu,Y.Y.;Xie,L.H.;Chen,S.F.;Huang,W.ActaPhys.-Chim.Sin.2010,26(7),1934.[张龙,林宗琼,顾菊芬,殷成蓉,侯晓雅,刘烽,刘玉玉,解令海,陈淑芬,黄维.物理化学学

报,2012,26(7),1934.]doi:10.3866/PKU.WHXB20100739(14)

Chu,Z.Z.;Wang,D.;Zhang,C.;Zou,D.C.ActaPhys.-Chim.Sin.2012,28(8),2000.[初增泽,王丹,张超,邹德春.

物理化学学报,2012,28(8),2000.]doi:10.3866/PKU.

WHXB201206071

(15)Wu,K.C.;Ku,P.J.;Lin,C.S.;Shih,H.T.;Wu,F.I.;Huang,

M.J.;Lin,J.J.;Chen,I.C.;Cheng,C.H.Adv.Funct.Mater.2008,18(1),67.

(16)

Chan,K.L.;Lim,J.P.F.;Yang,X.H.;Dodabalapur,A.;Jabbour,G.E.;Sellinger,A.Chem.Commun.2012,48(42),5106.doi:10.1039/c2cc30995e

(17)Hu,J.Y.;Era,M.;Elsegood,M.R.J.;Yamato,T.Eur.J.Org.Chem.2010,2010(1),72.doi:10.1002/ejoc.200900806(18)Kim,R.;Lee,S.;Kim,K.H.;Lee,Y.J.;Kwon,S.K.;Kim,J.J.;Kim,Y.H.Chem.Commun.2013,49(41),4664.doi:10.1039/c3cc41441h

(19)Park,H.;Lee,J.;Kang,I.;Chu,H.Y.;Lee,J.I.;Kwon,S.K.;Kim,Y.H.J.Mater.Chem.2012,22(6),2695.doi:10.1039/c2jm16056k

(20)Kumar,D.;Thomas,K.R.J.;Chen,Y.L.;Jou,Y.C.;Jou,J.H.Tetrahedron2013,69(12),2594.doi:10.1016/j.tet.2013.01.046(21)Yao,L.;Sun,S.H.;Xue,S.F.;Zhang,S.T.;Wu,X.Y.;Zhang,

H.H.;Pan,Y.Y.;Gu,C.;Li,F.H.;Ma,Y.G.J.Phys.Chem.C2013,117(27),14189.doi:10.1021/jp403463k

(22)

Zhang,Y.J.;Jin,Y.X.;Bai,R.;Yu,Z.W.;Hu,B.;Ouyang,M.;Sun,J.W.;Yu,C.H.;Liu,J.L.;Zhang,C.J.Photochem.Photobiol.A-Chem.2012,227(1),59.doi:10.1016/j.jphotochem.2011.11.003

(23)Taguchi,Y.;Uyama,H.;Kobayashi,S.J.Polym.Sci.Pol.

Chem.1996,34(4),561.

(24)Hong,Y.;Liao,J.Y.;Cao,D.;Zang,X.;Kuang,D.B.;Wang,L.;Meier,H.;Su,C.Y.J.Org.Chem.2011,76(19),8015.doi:10.1021/jo201057b

(25)Vougioukalakis,G.C.;Roubelakis,M.M.;Orfanopoulos,M.

J.Org.Chem.2010,75(12),4124.doi:10.1021/jo100277v

因篇幅问题不能全部显示,请点此查看更多更全内容