发布网友 发布时间:2022-04-20 14:32
共4个回答
热心网友 时间:2023-08-02 19:26
1、简单相关系数矩阵法(辅助手段)
此法简单易行;但要注意两变量的简单相关系数包含了其他变量的影响,并非它们真实的线性相关程度的反映,一般在0.8以上可初步判定它俩之间有线性相关。
2、变量显著性与方程显著性综合判断
(修正)可决系数大,F值显著大于临界值,而值不显著;那么可认为存在多重共线性。
3、辅助回归
将每个解释变量对其余变量回归,若某个回归方程显著成立,则该解释变量和其余变量有多重共线性。
(4)方差扩大(膨胀)因子法
(5)直观判断法
增加或者减少一个解释变量,或者改变一个观测值时,回归参数发生较大变化。重要解释变量没有通过t检验。有些解释变量的回归系数符号与定性分析的相反。
扩展资料:
解决方法
(1)、排除引起共线性的变量
找出引起多重共线性的解释变量,将它排除出去,以逐步回归法得到最广泛的应用。
(2)、差分法
时间序列数据、线性模型:将原模型变换为差分模型。
(3)、减小参数估计量的方差:岭回归法(Ridge Regression)。
参考资料:百度百科-多重共线性
热心网友 时间:2023-08-02 19:26
一、一般线性回归:
proc reg data=abc;
model y=x1-x4
run;
二、多重共线性的检验
1、简单相关系数检验法
proc corr data=abc;
var x1-x4;
run;
2、方差扩大因子法
proc reg data=abc;
model y=x1-x4/vif;
run;
3、直观分析法(略)
4、逐步回归检测法
这在SAS中有多重筛选解释变量的方法:forward、backword、stepwise、maxr、minr、rsquare,主要采用stepwise
proc reg data=abc;
model y=x1-x4/selection=stepwise sle=0.05 sls=0.10;
run; quit;
5、特征值和病态指数
proc reg data=abc;
model y=x1-x4/collin;
run;
三、多重共线性的补救措施
1、提出变量法(根据前面的检测剔除掉vif值大的变量……略)
2、增大样本容量(略)
3、变换模型形式
常使用变量的差分方式,一阶差分形式如下:
data abc;
set abc;
x1lag1=lag(x1);
x2lag1=lag(x2);
x3lag1=lag(x3);
x4lag1=lag(x4);
ylag1=lag(y);
if nmiss(x1lag1,x2lag1,x3lag1,x4lag1,ylag1)>0 then delete;
dx1=x1-x1lag1;
dx2=x1-x2lag1;
dx3=x1-x3lag1;
dx4=x1-x4lag1;
dy=x1-ylag1;
run;
proc reg data=abc;
model y=x1-x4;
run;quit;
4、利用非样本先验信息(即已知某些解释变量之间的等式从而可剔除掉一些解释变量,略)
5、横截面数据与时间序列数据并用
属于先验信息法的变种,首先利用横截面数据估计出部分参数代入原方程,再利用时间序列数据估计出另外的部分参数,其前提是前一部分参数在不同时间上变化很小。
6、变量变换
绝对指标转为相对指标;
名义数据转为实际数据;
小类指标合并为大类指标(主成分分析和因子分析,后面再予补充)
7、逐步回归法(参见检验部分,略)
8、岭回归
当自变量存在多重共线关系时, 均方误差将变得很大,故从均方误差的角度看, 普通最小二乘估计不是系数的好估计,减少均方误差的方法就是用岭回归估计替代最小二乘估计。但使得均方误差达到最小的k值依赖于未知参数系数和随机干扰项的方差,因此k 值的确定是岭回归分析中关键。
在实际应用中, 通常确定k值的方法有以下几种:①岭迹图法, 即对每个自变量xi, 绘制随k值的变化岭回归估计的变化曲线图。一般选择k使得各个自变量的岭迹趋于稳定;②方差膨胀因子法, 选择k使得岭回归估计的VIF<10;③控制残差平方和法, 即通过*岭回归估计的残差平方和不能超过cQ(其中c>1为指定的常数,Q为最小二乘估计的残差平方和)来找出最大的k值。
data abc;
input x1-x3 y;
cards;
149.3 4.2 108.1 15.9
161.2 4.1 114.8 16.4
171.5 3.1 123.2 19.0
175.5 3.1 126.9 19.1
180.8 1.1 132.1 18.8
190.7 2.2 137.7 20.4
202.1 2.1 146.0 22.7
212.4 5.6 154.1 26.5
226.1 5.0 162.3 28.1
231.9 5.1 1.3 27.6
239.0 0.7 167.6 26.3
;
run;
proc reg data=abc outest=out1 graphics outvif;
model y=x1-x3/ridge=0.0 to 0.1 by 0.01 0.2 0.3 0.4;
plot/ridgeplot;
proc print;run;quit;
9、主成分回归法
proc reg data=abc outest=out2;
model y=x1-x3/pcomit=1,2 outvif;
proc print data=out2;run;quit;
10、偏最小二乘回归法
proc pls data=abc outmodel=out3 cv= one method=simpls;
model y=x1-x3;
proc print data=out3;
run; quit;
这些是SAS软件的检验方法。
热心网友 时间:2023-08-02 19:27
简单相关系数矩阵法(辅助手段)
此法简单易行;但要注意两变量的简单相关系数包含了其他变量的影响,并非它们真实的线性相关程度的反映,一般在0.8以上可初步判定它俩之间有线性相关。
2、变量显著性与方程显著性综合判断
(修正)可决系数大,F值显著大于临界值,而值不显著;那么可认为存在多重共线性。
3、辅助回归
将每个解释变量对其余变量回归,若某个回归方程显著成立,则该解释变量和其余变量有多重共线性。
热心网友 时间:2023-08-02 19:28
计量经济学汇总有很多共性检测方法。