发布网友 发布时间:2022-04-25 21:13
共3个回答
热心网友 时间:2022-05-03 09:51
隐函数存在定理1:
设函数F(x,y)在点P(x0,y0)的某一邻域内具有连续偏导数,且F(x0,y0)=0;Fy(x0,y0)≠0。
则方程:F(x,y)=0在点(x0,y0)的某一邻域内有恒定能唯一确定一个连续且具有连续导数的函数y=f(x),它满足条件y0=f(x0),并有dy/dx=-Fx/Fy,这就是隐函数的求导公式。
隐函数存在定理2
设函数F(x,y,z)在点P(x0,y0,z0) 的某一邻域内具有连续偏导数,且 F(x0,y0,z0)=0,Fz(x0,y0,z0)≠0。
则方程:F(x,y,z)=0在点 (x0,y0,z0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z=f(x,y),它满足条件z0=f(x0,y0),并有αz/αx=-Fx/Fz;αz/αy=-Fy/Fz。
热心网友 时间:2022-05-03 11:09
隐函数存在定理主要讲述如何从二元函数F(x,y)的性质来判定由F(x,y)=0所确定的隐函数y=f(x)是存在的,并且,这个函数还具有某些特性。
在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导。
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数)。
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值。
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
热心网友 时间:2022-05-03 12:43
隐函数存在定理1
设函数F(x,y)在点P(x0,y0)的某一邻域内具有连续偏导数,且F(x0,y0)=0;Fy(x0,y0)≠0,则方程
F(x,y)=0在点(x0,y0)的某一邻域内有恒定能唯一确定一个连续且具有连续导数的函数y=f(x),它满足条件y0=f(x0),并有dy/dx=-Fx/Fy,这就是隐函数的求导公式。
隐函数存在定理2
设函数F(x,y,z)在点P(x0,y0,z0) 的某一邻域内具有连续偏导数,且 F(x0,y0,z0)=0,Fz(x0,y0,z0)≠0,则方程F(x,y,z)=0在点 (x0,y0,z0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z=f(x,y),它满足条件z0=f(x0,y0),并有αz/αx=-Fx/Fz;αz/αy=-Fy/Fz;
如果对你有帮助,请给有用,谢谢