关于反三角函数arccot的极限求解,谢谢。

发布网友 发布时间:2022-04-26 17:39

我来回答

1个回答

热心网友 时间:2023-10-18 05:17

设x=tany是直接函数,y属于(-pi/2,pi/2)则y=arctanx是它的反函数.函数x=tany在(-pi/2,pi/2)内单调可导
(tany)'=sec^2y
有反函数求导公式dy/dx=1/(dx/dy)得
(arctanx)'=1/(tany)'=1/sec^2y
又sec^2y=1+tan^2y=1+x^2
所以(arctanx)'=1/(1+x^2)
又arccotx=pi/2-arctanx
将(arctanx)'=1/(1+x^2)代入即可得到(arccotx)'=-1/(1+x^2)追问可否不用求导方式,因为这道题处在用导数方式求极限之前。谢谢

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com