辽宁高中有关物理学史

发布网友 发布时间:2022-04-22 04:27

我来回答

2个回答

热心网友 时间:2023-07-21 02:23

  实际上,关于物理学史,你没必要背很多,只需知道主要人物和主要贡献即可,主干知识才是重要的,何况死记的东西能反应能力?这与高考初衷不符!但要把历史上重要的、经典的物理实验好好复习,这才是重点,因为每个实验都含有丰富的知识,特别是物理学家当初设计实验的创新意识和巧妙之处值得学习,这是近几年高考的重点和热点,应该注意。还是给你找了一些来:

  一、力学:
  1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体不会比轻物体下落得快;他研究自由落体运动程序如下:
  提出假说:自由落体运动是一种对时间均匀变化的最简单的变速运动;
  数学推理:由初速度为零、末速度为v的匀变速运动平均速度 和 得出 ;再应用 从上式中消去v,导出 即 。
  实验验证:由于自由落体下落的时间太短,直接验证有困难,伽利略用铜球在阻力很小的斜面上滚下,上百次实验表明: ;换用不同质量的小球沿同一斜面运动,位移与时间平方的比值不变,说明不同质量的小球沿同一斜面做匀变速直线运动的情况相同;不断增大斜面倾角,重复上述实验,得出该比值随斜面倾角的增大而增大,说明小球做匀变速运动的加速度随斜面倾角的增大而变大。
  合理外推:把结论外推到斜面倾角为90°的情况,小球的运动成为自由落体,伽利略认为这时小球仍保持匀变速运动的性质。(用外推法得出的结论不一定都正确,还需经过实验验证)
  注:伽利略对自由落体的研究,开创了研究自然规律的一种科学方法。(回忆理想斜面实验)
  2.1683年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律。
  3.17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
  4.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
  5.17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。
  6.我国宋朝发明的火箭与现代火箭原理相同,但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);多级火箭一般都是*火箭,我国已成为掌握载人航天技术的第三个国家。
  7.17世纪荷兰物理学家惠更斯确定了单摆的周期公式。周期是2s的单摆叫秒摆。
  8.奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。(相互接近,f增大;相互远离,f减少)
  二、热学:
  1.1827年英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
  2.19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。
  3.1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。
  4.1848年 开尔文提出热力学温标,指出绝对零度(-273.15℃)是温度的下限。T=t+273.15K
  热力学第三定律:热力学零度不可达到。
  三、电磁学:
  1.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。(转化)
  2.1752年,富兰克林在费城通过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。
  3.1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
  4.1911年荷兰科学家昂尼斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
  5.1841~1842年 焦耳和楞次先后各自发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。
  6.1820年,丹麦物理学家奥斯特发现电流可以使周围的磁针偏转的效应,称为电流的磁效应。
  安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥;同时提出了安培分子电流假说。
  荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。
  7.汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。
  1932年美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。
  8.1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应现象;
  1834年楞次发表确定感应电流方向的定律。
  9.1832年亨利发现自感现象,即在研究感应电流的同时,发现因电流变化而在电路本身引起感应电动势的现象。日光灯的工作原理即为其应用之一。双绕线法制精密电阻为消除其影响应用之一。
  10.18年英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场的基本方程组,后称为麦克斯韦方程组,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波(注意第二册P243的图)。
  1887年德国物理学家赫兹用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。
  四、光学:
  1.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。
  2.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)
  3.1621年荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。
  4.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。
  1801年,英国物理学家托马斯•杨成功地观察到了光的干涉现象
  1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。
  18年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,1887年由赫兹证实。
  15年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。
  1900年,德国物理学家普朗克为解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律。(量子力学的说明在第三册P56)
  1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)
  光具有波粒二象性,光是电磁波、概率波、横波(光的偏振说明光是一种横波)。
  光的电磁说中要注意电磁波谱(第三册P31),还要注意原子光谱(涉及光谱分析第三册P50)
  5.1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。(明确其局限性)
  6.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。(第三册P54)
  五、原子物理学:
  1.17年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。
  2.1909年-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。
  3.16年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。
  天然放射现象有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变的快慢(半衰期)与原子所处的物理和化学状态无关。
  4.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。
  预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。
  5.1939年12月德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。1942年 在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。
  6.1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是利用强激光产生的高压照射小颗粒核燃料。
  7.现代粒子物理:
  1932年发现了正电子,19年提出夸克模型;
  粒子分为三大类:媒介子,传递各种相互作用的粒子如光子;
  轻子,不参与强相互作用的粒子如电子、中微子;
  强子,参与强相互作用的粒子如质子、中子;强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.

热心网友 时间:2023-07-21 02:24

发展史
经典物理与近代物理
第一,立足于牛顿力学的经典物理学和经典自然科学在很在程度上是关于自然事物,自然属性,自然过程和自然界规律性的知识,但它往往没有对这些事物,属性,过程和规律性的机制(道理)从因果性上作出解释;近代自然科学所能做到的或应当做到的,则是依据于对微观过程的了解,解决这些"为什么"的问题.
第二,经典自然科学有它的普遍性和整体性,但就对整个自然事物的反映看,经典理论基本上是关于特殊的,局部的自然领域的知识;近代自然科学则具有更高程度的普遍性和更大范围的全局性
第一章 发展中的物理学
1 相对论
相对论是现代物理学的重要基石.它的建立20世纪自然科学最伟大的发现之一,对物理学,天文学乃至哲学思想都有深远的影响.相对论是科学技术发展到一定阶段的必然产物,是电磁理论合乎逻辑的继续和发展,是物理学各有关分支又一次综合的结果.相对论经迈克耳逊,莫雷实验,洛伦兹及爱因斯坦等 人发展而建立.
2 量子力学
1900年普朗克为了克服经典理论解释黑体辐射规律的困难,引入了能量了概念,为量子理论奠定了基石.随后爱因斯坦针对光电效应实验与经典理论的矛盾,提出了光量子假说,并在固体比热问题上成功地运用了能量子概念,为量子理论的发展打开了局面.1913年,玻尔在卢瑟福有核模型的基础上运用了量子化概念,对氢光谱作出了满意的解释,使量子论取得了初步的胜利.之后经过玻尔,索末菲海森堡,薛定谔,狄拉克等人开创性的工作,终于在1925年-1928年开成了完整的量子力学理论.
3 原子核及基本粒子
原子核物理学起源于放射性的研究,是19世纪末兴起的崭新课题.在这以前,人类对这年领域毫开所知.从事这项研究的物理学家,他们通过作新创制的简陋仪器进行各种实验和观察,从中收集数据,总结经验,寻找规律,探索不断开拓新的领域. 1933年以后,原子核物理理论才逐渐形成.
4 固体物理学
20世纪初,固体物理学就开始深入到微观领域,人们开始利用微观规律来计算实验观测量.量子力学首先应用于简谐振子及简单的原子上,并显示了其正确性,其次又在化学键的问题上取得了效果.二十世纪20年代后,固体物理学作为一门学科在物理学领域中诞生.
5 物理学与技术
物理学的发展为新技术提供了基础,与此相反的关系也完全存在.假如不采用电子技术的各式各样的机器,今天的物理学,甚至整个科学研究都可能连一天也存在不下去.要建造超高能物理学所不可缺少的巨大加速器,必须要动员当前最先进的精密机械技术和电子学技术才行.同时由于对技术进步的不断要求,作为这些技术基础的物理学的研究也正在日益加强.可以说,没有上述各方面的条件,就不可能存在今天这种大规模,多方面的物理学研究.
6 科学的*化
近代物理学的基础工程学科化这种趋势,当然是由围绕科学的新的社会状况的出现所形成和促进的.
7 物理学在地理上的扩大
物理学的变迁,同时也伴有物理学在地理上扩大.*(苏联),美国,日本,中国及欧洲,亚洲,非洲物理学在地理上的扩大,必将会进一步扩大在进行尖端物理学研究,所以,没有理由认为这些国家将来不会产生真正的物理学研究.
8 研究技术化
可以把这一趋势同由物理学所支撑着的各种各样新技术所持有的可能性相结合,看作是社会进步的一个标志.
第二章节近代物理学的序幕
一 电子的发现
背景: 电子的发现起源于对阴极射线的研究.阴极射线是低压气体放电过程中的一种奇特现象.这一观点得到赫兹等人的支持,赞成以太说的大多是德国人.英国物理学家克鲁克斯以及舒斯特根据各自的实验及解释都认为阴极射线是由粒子组成的.德国学派主张以太学说,英国学派主张带电微粒说.
J.J.汤姆生对电子研究
⒈定性研究:J.J.汤姆生还改进了赫兹的静电场偏转实验,他进一步提高了真空度,并且减小极间电压,以防止气体电离,终于获得了稳定的静电偏转.
⒉定量研究 :一种方法是用静电场偏转管在管子两侧各加一通电线圈以产生垂直于电场方向的磁场,然后根据电场和磁场分别造成的偏转,计算出阴极射线的荷质比e/m,另一种方法是测量阴极的温升.因为阴极射线撞击到阴极,会引起阴极的温度升高.J.J.汤姆生把热电偶接到阴极,测量它的温度变化,两种不同的方法得到的结果相近,荷质比
⒊普遍性证明
二 X射线的研究
15年,德国的维尔茨堡大学,伦琴教授 阴极射线研究 发现了X射线
三,放射性的发现
对阴极射线研究引起了放射性物质的发现 .16年5月18日,贝克勒尔发现了放射性.
贝克勒尔发现放射性虽然没有伦琴发现X射线那样轰动一时,意义却更为深远.因为这是人类第一次接触到核现象,为后来居里夫妇,卢瑟福等对放射性研究发展开辟了道路.
第三章 相对论的建立
相对论的研究起源于"以太漂移"的探索以及光行差的观测.1678年惠更斯把光振动类比于声振动,看成是以太中的弹性脉冲.但是后来由于光的微粒说占了上风,以太理论受到压抑,牛顿就认为不需要以太,他主张超距作用.1800年以后,由于波动说成功地解释了干涉,衍射和偏振等现象,以太学说重新抬头.在波动说的支持者看来,光既然是一种波,就一定要有一种载体,这就是以太.他们把以太看成是无所不在,绝对静止,极其稀薄的刚性"物质".
机械波的波动方程与电磁波的波动方程
机械振动只有在弹性介质中传播才形成机械波,在弹性介质中应用牛顿定律和胡克定律,即可建立机械波的波动方程,一维横波的波动方程为
机械波的波动方程和波速这些性质是否也适用于电磁波(包括光波)呢 电磁波有类似于机械波的波动方程,那么,电磁波的波动方程是相对于什么样的参考系建立的 真空中速度是相对于什么参考系的.
1861年,英国物理学家麦克斯韦总结前人的实验规律基础上,推导真空中电磁波的波动方程,其一维形式的真空波动方程为:
3.迈克耳逊―莫雷实验
波动理论假定了真空中充满以太,光相对于以太的速度C传播,地球上的观察者所测到真空中光速的数值将是多大呢 如果认为地球运动时以太完全没有被带动,地球上测到的真空光速应该是光对以太的速度与地球相对于以太速度的矢量差,为了能够显示出光相对于地球的传播速度不同于C,迈克耳逊设计了一个十分巧妙的实验.
在迈克耳逊最初装置中,采用地球公转速度可得0.04个条纹,这是一个很小的效应,但他的仪器装置观察到的只是0.02个条纹的变动,即使进一步改进,结果都没有观察到条纹的移动.
4.洛伦兹等人的贡献
斐兹杰惹于18年,洛伦兹于12年先后地提出了著名的洛伦兹―斐兹杰惹收缩假定.他们都承认以太的存在,在以太中静止的一个长为L的物体,当它沿长度方向相对于以太速率V运动时,将缩短到
5. 爱因斯坦与狭义相对论
将相对性原理应用于电磁理论,如果认为电磁场的麦克斯韦方程组是正确的(方程组中真空中光速C的普适常数出现).则必须同时承认真空中光速C对所有惯性系相同,与波源的运动无关.然而,这却是于牛顿力学不相等的.在牛顿力学中,速度总是相对于一定的参考系,不允许在动力学方程中出现普适的速度.
6.广义相对论的建立
狭义相对论建立之后,爱因斯坦并没有止步,他认为狭义相对论还有许多问题没有解决,例如:为什么惯性质量随能量变化 为什么一切物体在引力场中下落都具有同样的加速度 1916年,爱因斯坦发表了《广义相对论的基础》,对广义相对论的研究作了全面的总结.在论文中,爱因斯坦证明了牛顿理论可以作为相对论引力理论的第一级近似,并且组给出了谱线红移,光线弯曲,行星轨道近日点进动的理论预言
7.爱因斯坦的成功分析
1.兼收并蓄
2.敢于创新,突破常规精神
3.哲学修养
美发射探测卫星 验证88年前爱因斯坦的预言
第四章 量子力学的发展
一 黑体辐射的研究
1859年 基尔霍夫物体热辐射的发射本领e(v,T)和吸收本领a(v,T)的比值都相等,并等于该温度下黑体对同一波长的辐射度
1879年 斯特潘根据实验总结出黑体辐射总能量与黑体温度四次方成正比的关系
13年 维恩经验式子
1900年 瑞利
为了解决上述困难,普朗克利用内插法,将适用于短波的维恩公式和适用于长波的瑞利―金斯公式衔接起来.在1900年提出了一个新的公式
普朗克与统一思想的波动
普朗克对量子论的研究工作中犹豫徘徊,畏缩不前的主要原因是物理学的统一性问题,即如何对量子论的解释.
玻尔理论的形成
光谱
卢瑟福
量子理论
玻尔理论
1913年《原子构造和分子构造》 提出了两条基本假设:定态,跃迁
1914年,夫兰克和G.赫兹以能量分立的指导思想,进行电子与原子的碰撞实验设计.他们利用慢电子与稀薄水银蒸气碰撞方法,来确定银原子的激发电位或电离电位.从而证实原子只能处在一定的分立能量状态当中.由此突破了"自然无飞跃"能量连续性的经典物理观点.这个实验成为玻尔原子理论的一个重要证据之一,
1918年,玻尔为了解释谱线强度这一当时原子理论无法解决的难题,提出了协调经典物理理论与微观量子理论之间相互关系的对应原理
玻尔的直觉与创新研究方法
玻尔的科研思想与他的直觉相联系在一起,他从不畏缩不前,也不遵循所谓严格的逻辑道路的方法.玻尔灵活的思维特点与思想方法在今天已成为越来越多的人所理解和赏识.
量子力学的建立
1924年泡利提出不相容原理.这个原理促使乌伦贝克和高斯密特,在1925年提出电子自旋的设想.从而使长期得不到解释的光谱精细结构,反常塞曼效应和斯特恩―盖拉赫实验等难题迎刃而解.同年,海森伯创立了阵矩力学,使量子理论登上了一个新的台阶.1923年德布罗意提出物质波假设,导致了薛定谔在1926年以波动方程的形式建立了新的量子理论.不久薛定谔证明,这两种量子理论是完全等价的,只不过形式不同罢了.1928年狄拉克提出电子的相对论性运动方程――狄拉克方程,奠定了相对论性量子力学的基础.

第五章中国物理学者在近代物理学发展中贡献
一 出国留学
中国学者出国留学可追溯到,在19世纪中叶,清朝赴欧留学得就达一百多人.清朝洋务活动的"求强","求富"过程中,为训练新式陆海军和创办近代军事工业和民安企业,曾陆续派出许多学生到各国求学.在1862―1900年间,有几百人,以官费,自费出国游学,但主要是学习语言,驾驶,架线,电工,炮术,造船,铸造,采矿,机织等实用技术和军事技术,当时不可能也没有眼光派学生去学习数理化基础学科.
二 物理学教育的发展
在15年和17年分别创办了天津西学堂和上海南洋公学.中西学堂分设头等学堂,二等学堂,前者相当于大学.
18年创办的京师在大学堂,
三 研究机构的建立
1928年3月在上海成立国立理化实业研究所,同年6月*研究院创立,同年11月理化实业研究所之一部分改名为物理学研究所,隶属*研究院.
1929年9月在北平建立了北平研究院
20世纪20年代末,国家批准有条件大学设立研究部,在教学同时开展科学研究.
四 中国物理学会
中国物理学会成立于1932年,它是中国物理学教学,研究发展的必然结果,截止1932年左右,物理学工作者约300人左右.
中国物理学报于1933年创刊.在1933―1935年出版了第一卷共三期,至1950年共出版了七卷.该学报以外文(主要为英文,个别为法文,德文)发表,附以中文摘要.它在国内外学术交流中起到了很好的作用.
五 国外物理学家对我国近代物理学发展得作用
1 国外物理学家对我国物理学者得培养与帮助.我国许多物理学家都得到了国外著名物理学者的培养.
2 国外物理学家来华讲学极大地促进了我国物理学的发展.1921年蔡元培和夏元0访问爱因斯坦,并邀请他来中国讲学 .朗之万于1931年底来华讲学.1937年5月31日至6月4日,玻尔来华进行了讲学.
六 我国物理学者在近代物理学中得主要贡献
吴有训在美国研究Compton效应著称,他的关于Compton效应中变线与不变线的能量分布比率的两篇实验论文,确凿地证明了Compton效应的存在,丰富的和发展了Compton工作,并加速国际学术界对Compton效应的认识.吴有训回国后,或独自或带领研究生继续从事有关的研究.
赵忠尧在研究硬射线的吸收系数及其散射的实验中,最早观察到正负电子对的产生和湮没现象
萨本栋在30年代关于三相电路并矢代数的研究,是属于数学,物理和电机的三角地带,被美国电气工程师学会评为1937年度"理论和研究最佳文章荣获".40年代萨本栋从事交流电机研究,以标么值系统分析交流电机问题.他根据在厦门大学和美国讲课的素材编写的《交流电机基础》一书,被英国,美各国高等院采作教材.开创了中国科学家编写的教材被国外采用的先例.
1949年,张文裕在吸收介子的云室研究中,发现了子和子辐射现象,开拓了奇异原子物理研究的新领域.国际上曾称此二发现为"张辐射"和"张原子".
黄昆在1947年发现了后来被称为"黄散射",即固体中杂质缺陷导致X光漫散射,它直接有效地成为研究晶体微观缺陷的手段.1950年,黄昆和(李爱扶)共同提出了多声子辐射和无辐射跃迁的量子理论,在国际上被称为黄理论.1947-1951年间,黄昆与合著《晶格动力学》一书,它成为该领域的一本基本理论著作而在国际上享有盛名.
谢玉铭于1932-1934年间在美国与W.V.Houston合作研究氢原子光谱Balmer系的精细结构,发现了在40年代后期才得以肯定的"Lamb"移位,并提出了40年代后期有关重整化理论的发展方向相同的大胆建议.W.E.Lamb于1947-1948年间所作的类似实验及发现而获得1995年诺贝尔物理学奖.

宇宙起源及超导体材料的研究.
量子力学中的,量子密码学,量子计算机,等等和量子有关的分学科
往更小和更大的方面发展。
更小---了解物质的构成,看看夸克是否可以再分。
更大---了解宇宙了!宇宙物理学
外星人的存在与否

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com